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A B S T R A C T

Multiple JPEG compressions leave artifacts in digital images: residual traces that could be exploited in forensics
investigations to recover information about the device employed for acquisition or image editing software.
In this paper, a novel First Quantization Estimation (FQE) algorithm based on convolutional neural networks
(CNNs) is proposed. In particular, a solution based on an ensemble of CNNs was developed in conjunction with
specific regularization strategies exploiting assumptions about neighboring element values of the quantization
matrix to be inferred. Mostly designed to work in the aligned case, the solution was tested in challenging
scenarios involving different input patch sizes, quantization matrices (both standard and custom) and datasets
(i.e., RAISE and UCID collections). Comparisons with state-of-the-art solutions confirmed the effectiveness of
the presented solution demonstrating for the first time to cover the widest combinations of parameters of
double JPEG compressions.
1. Introduction

JPEG is the most commonly used file format for digital images.
Indeed JPEG is by far the most common compression engine and has
been investigated for digital investigation purposes. When facing a
JPEG image, the first problem that could be addressed is image his-
tory reconstruction [1,2]: this could provide information about image
authenticity and the acquisition device that generated it. After the
acquisition (and likely a first JPEG compression), the image usually
goes through a Social Network or an Instant Messaging platform [3]
that in most cases, applies further JPEG compression. To recover infor-
mation about the acquisition device [4–6] the forensic analysis of JPEG
images specializes in several different tasks: (i) the Double Quantization
Detection (DQD) to detect if an image has been JPEG compressed
at least twice and (ii) the Quantization Step Estimation (QSE) [7,8].
Forensics community has been spending considerable effort on DQD,
facing the problem in different contexts [9–12] and employing different
strategies [13–15]. In a digital forensics investigation, DQD is often
followed by FQE which has the goal to estimate the quantization matrix
employed in the first JPEG compression.

Many approaches have recently been proposed to address this prob-
lem in various scenarios. Initially, several methods were designed to
estimate the first quantization matrix in presence of file format changes
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(e.g., from JPEG to Bitmap) when information about the compression
matrix is no longer available in embedded metadata (Fan and De
Queiroz [2], Li et al. [16]). Later, scenarios involving multiple JPEG
compressions (usually two, with some exceptions such as [17]) were
investigated. Bianchi et al. [18–20] designed an FQE method based
on Expectation Maximization algorithm while Galvan et al. [21] intro-
duced a technique based on the analysis and filtering of Discrete Cosine
Transform (DCT) histograms. Similar ideas have also been exploited
in [22–24]. Recently, Thai et al. [7,25] exploited intuitive insights
usually employed in steganography to design a robust FQE approach.

Due to the large amount of data that can be properly collected and
analyzed, machine learning algorithms have also been introduced in re-
cent FQE methods. Lukáš and Fridrich proposed a first approach based
on neural network in [26]. Recently, Convolutional Neural Networks
(CNNs) have also been exploited to design FQE solutions. In particular,
state-of-the-art CNN results have been achieved by Niu et al. [27] and
Tondi et al. [28] for both aligned and non-aligned FQE scenarios. These
deep learning solutions have been designed to work directly on input
patches; although, end-to-end learning can be exploited also in the FQE
scenario, this design choice limits the usability of the provided models
to the specific patch size used during the training phase. Moreover, in
almost all cases the training phase involved only data processed by
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standard quantization tables producing in output models that suffer
heavily of overfitting. To cope with this limit, Battiato et al. [29]
proposed a solution based on both statistical analysis and machine
learning approach (i.e., nearest neighbor classifier) in the aligned sce-
nario obtaining effective results also in presence of custom quantization
matrices also avoiding problem of overfitting.

In this paper we have considerably improved state-of-the-art results
by employing a CNN-based solution coupled with a-priori investigation
in terms of data exploitation and collection. It is worth noting that the
proposed solution, to the best of our knowledge, is the first FQE tech-
nique based on deep learning specifically designed to work without any
limits in terms of involved quantization matrices employed in the first
and second compression steps and able to manage a wide range of input
patch sizes without requiring any modification of the related network
architecture. Moreover, a novel regularization approach was designed
to cope with challenging conditions (i.e., homogeneous patches, spe-
cific relations among quantization factors) that are complex to deal
with considering information contained in a single DCT histogram.
Experiments in different scenarios, involving several datasets confirmed
that the proposed strategy significantly outperforms previous studies by
a large margin. The main contributions of the proposed solution can be
then summarized as follows:

• A novel CNN-based solution designed to work with DCT his-
tograms distributions as input and robust with respect to different
challenging conditions in the FQE aligned scenario (i.e., custom
quantization tables and patch size).

• A regularization approach, developed measuring real quantiza-
tion table statistics, able to boost overall performances whenever
information available in the single input histogram is partially
missing.

• An exhaustive study with many comparisons of state-of-the-art
FQE techniques measured on various combination of first and
second quantization factors, taking into account quantization pa-
rameters of commercial software.

ata used for training and test together with the employed CNN ar-
hitectural model will be available for research purposes in a public
epository.

The remainder of this paper is organized as follows. Section 2
eports the JPEG notation employed in the paper, Section 3 describes
he proposed method with preliminary analysis and related parameters
etting in Section 4. Experimental results and comparisons are reported
n Section 5 whereas Section 6 concludes the paper.

. JPEG notation

Given a raw image 𝐼 , JPEG compression [30] can be defined as a
unction 𝑓𝑄 such that 𝐼 ′ = 𝑓𝑄(𝐼), where 𝐼 ′ is the JPEG compressed

image, 𝑄 is the quantization matrix (8 × 8) containing the quantization
actors 𝑞𝑖 ∈ N with 𝑖 ∈ {1, 2,… , 64}. As first step, 𝑓𝑄(𝐼) converts 𝐼 from

the RGB to YCbCr color space, and then divides the input image in 8 × 8
non-overlapping blocks applying also the integer DCT (Discrete Cosine
Transform). Finally, each 8 × 8 block is divided, pixel by pixel, by 𝑄,
rounded and then encoded by classic entropy based engine.

In this paper, only luminance (i.e., Y channel) was considered. Let
us also define 𝐼 ′′ = 𝑓𝑄2

(𝑓𝑄1
(𝐼)) a JPEG double compressed image,

with 𝑄1 and 𝑄2 denote the quantization matrices employed for the
first and the second compression respectively. Moreover, we refer to
𝑄𝐹 as the standard quantization matrix associated to a specific quality
factor [30] while 𝑄𝐹𝑖 to further specify the 𝑖th JPEG compression
(e.g. 𝑖 = 1, 2,… ) in which the matrix was employed. We denote ℎ𝑖
the empirical distributions built from the 𝑖th DCT coefficients extracted
from the 8 × 8 blocks of 𝐼 ′′. Finally, we define the 𝑘 quantization
factors, in zig-zag order, of 𝑄1 as 𝑞11, 𝑞12,… , 𝑞1𝑘, while we denote as 𝑞1
and 𝑞2 the quantization factors employed in the first and in the second
compression respectively.
2

3. Proposed method

The proposed method for the estimation of first quantization matrix
can be summarized as an ensemble of CNNs specifically designed
for the task. Being a machine learning approach, in the following
Subsections we will describe in details: (i) the features, (ii) the em-
ployed datasets, (iii) the neural network architecture with all the
design information needed for reproducibility and finally the developed
regularization strategies.

3.1. Features

The main aim of the proposed solution is to exploit the information
contained in Discrete Cosine Transform (DCT) distributions computed
from a double compressed image to estimate the first 𝑘 quantization
factors employed in the first compression. Preliminary results achieved
by Battiato et al. [29], by working on DCT histograms, suggested us
to further investigate allowing us to better manage and exploit the
considerable amount of involved data. In particular, many state-of-the-
art approaches based on machine learning [27,28], usually train their
models considering a dataset built with a fixed quantization matrix
in the last compression (often a standard matrix related to a specific
𝑄𝐹 ). However, this design choice strongly limits, in some way, the
effectiveness of the provided models. In real applications, it is very
likely to find double compressed images with 𝑄2 different than the one
used in those studies. This would force the investigator to build a new
dataset and to perform a new training phase on it finally obtaining a
new model with the desired 𝑄2 (moreover it should be demonstrated
to work effectively).

To better exploit the information contained in the input data (DCT
histograms), limiting also the number of models to be trained, for
each 𝑞2 value, only two sets of empirical distributions ℎ𝑖 related to

C and AC coefficients were considered in the proposed approach.
ll histograms related to the AC terms, due to the similarity of their
istributions [31], were then collected together. In our tests, 𝑞1𝑚𝑎𝑥
enotes the maximum quantization factor value to be predicted. For
xample, in the matrix reported in Figs. 1(c) and 1(d) considering 𝑘 =
5 in zig-zag order, 𝑞1𝑚𝑎𝑥 values are 5 and 21 respectively (highlighted

in the figures).
To sum up, 2 ⋅ 𝑞1𝑚𝑎𝑥 models allowed us to deal with double com-

ressed images with a generic second compression matrix 𝑄2 whose
uantization factors are lower than or equal to 𝑞1𝑚𝑎𝑥 in the first 𝑘 posi-
ions (zig-zag order). Let consider that strategies involving all possible 𝑘
uantization factors in a unified way actually have to take into account
1𝑚𝑎𝑥

𝑘 combinations. Considering parameter values usually employed
n state-of-the-art solutions, 𝑘 = 15 and 𝑞1𝑚𝑎𝑥 = 22, in order to cope
ith the set of second quantization matrices, 2215 models have to be

rained, whereas employing our strategy we reduced such amount to a
inite short number equal to 44. The proposed strategy allows to deal
ith a large number of double quantization parameters maintaining a

ust feasible workload, in terms of computational effort.

.2. Employed dataset

A well known critical aspect in the design of a machine learning
lgorithm is the choice of a proper dataset to be employed in the
raining phase. Although several datasets are available in literature, in
his paper, RAISE [32] was considered. The choice of RAISE allowed
s to obtain heterogeneous images with different resolutions. RAISE
s composed of 8156 high-resolution uncompressed images captured in
ifferent scenes (indoor, outdoor etc.) employing different cameras.

The double compression phase was carried out extracting different
× 𝑑 central patches from raw images and compressing the images
ith a proper combinations of constant matrices 𝑀𝑖 (Figs. 1(a) and
(b)) with 𝑖 ∈ {1, 2,… , 𝑞1𝑚𝑎𝑥}. In our tests, the value of 𝑞1𝑚𝑎𝑥 was
et to 22 whereas 4 different patch sizes with 𝑑 ∈ {64, 128, 256, 512}
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Fig. 1. Example of the constant matrix 𝑀𝑖 with 𝑖 = 4 (a) and 𝑖 = 22 (b), standard quantization matrix with 𝑄𝐹 = 90 (c) and custom quantization matrix extracted from Photoshop
with quality 5.
Fig. 2. Parametric architecture representing the trained CNNs. The first layer represents the distribution of 𝑖th DCT coefficient, compressed the second time with 𝑞2. The input
distribution is then reduced in ℎ𝑞2 bins. The following four layers are 2D convolutions with a filter 1 × 3, batch normalization and ReLu activation function. The last two layers
consist of a fully connected and a softmax layer with 22 elements.
were considered. Hence, the final number of JPEG double compressed
images exploited to train the proposed solution was 8156×22×22×4 =
15, 790, 016. Moreover, starting from a double compressed image, 𝑘 = 15
DCT distributions (1 DC and 14 AC) were extracted. Each distribution
is then characterized by 4 parameters: patch size 𝑑, first quantization
factor 𝑞1, second quantization factor 𝑞2 and specific DCT position 𝑘.
Finally, to better organize this huge amount of data (i.e., 8156×22×22×
4×15), all the distributions were clustered according to the parameters
𝑑, 𝑞2 and DCT coefficient (DC, AC) generating 4 × 22 × 2 = 176
different sets. It has to be noted that other datasets (BOSSBASE [33]
and UCID [34]) were also employed in this paper to avoid overfitting
in the parameter setting (Section 4.1) and to test the performance of
the proposed solution also considering different configurations in terms
of image resolution (Section 5). BOSSBASE [33] is a dataset composed
of 1000 512 × 512 grayscale images, created in 2010 for a scientific
challenge with the goal to figure out which images contained a hidden
message and which images do not, while UCID [34] is a dataset which
has over 1300 medium resolution uncompressed images often employed
for forensic purposes.

3.3. Network architecture

The aforementioned choices about employed dataset and histogram
generation and organization, are important starting point to the design
of a machine learning approach able to work in real scenarios with
custom quantization matrices. Deep learning techniques can consider-
able improve the overall accuracy whilst maintaining robustness and
generalization properties.

Given a double JPEG compressed image 𝐼 ′′ the main aim of the
proposed solution is the estimation of the 𝑘 first quantization factors
employed in the first compression. It is worth noting that 𝑄2 values
can be read directly from the JPEG file: the second quantization factors
𝑞2𝑖 with 𝑖 ∈ {1, 2,… , 𝑘} are already available. Furthermore, as already
pointed out in Section 3.2, for each 𝑞2, two different DCT coefficient
3

types (DC or AC), have to be taken into account, due to their difference
in terms of statistical distribution. We then trained one DC-CNN and
one AC-CNN for each possible value of 𝑞2 ∈ {1, 2,… , 𝑞1𝑚𝑎𝑥}. Each CNN
has the architecture synthetically sketched in Fig. 2. The input of these
networks are the normalized DCT histograms with ℎ𝑞2 =

⌈

1025∕𝑞2
⌉

bins. The size of the following layers is functions of ℎ𝑞2. Fig. 2 sum-
marizes graphically the neural network architecture layers that consist
of 2D convolutions carried out with 1 × 3 filters, a batch normalization
and a ReLu activation whereas the last two layers are fully connected
layers with the standard softmax function with 𝑞1𝑚𝑎𝑥 = 22 values as
output layer. As regards the training phase is concerned, we employed
Stochastic Gradient Descent (SGD) as optimizer with a starting learning
rate 10−3 and momentum 9−1, while the categorical cross-entropy was
the loss function employed during a 15-epochs training ran with batches
of 512 images. Moreover a decay step on learning rate value was
carried out, with the drop value described in Eq. (1).

𝑙𝑟𝑒 = 𝑙𝑟0(𝑑⌊(1+𝑒)∕𝑒𝑑⌋𝑟 ) (1)

where 𝑒 is the epoch, 𝑙𝑟𝑒 is the learning rate of epoch 𝑒, 𝑙𝑟0 is the starting
learning rate, 𝑑𝑟 = 0.2 is the drop value and 𝑒𝑑 = 3 is the number of
epochs for every drop.

3.4. Regularization

Sometimes the amount of information contained in an input his-
togram could be not enough to estimate the related first quantization
factor. This lack of information could depend both on the input data
(e.g., homogeneous regions) and specific 𝑞1, 𝑞2 combinations (e.g., mul-
tiples). For example, considering 𝑞2 = 5, first quantization factor values
equal to 1 and 5 are difficult to discriminate. To limit these issues, as-
sumptions about neighboring element values in the quantization matrix
can be exploited. To verify these assumptions empirically, an analysis
on a dataset (Park et al. [35]) of actual quantization matrices was
performed. Specifically, the dataset consists of 1170 different matrices:
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Fig. 3. Empirical distribution of differences of consecutive quantization factors (zig-zag
order) built from standard and custom matrices collected in [35] with 𝑞1𝑖 ≤ 𝑞1𝑚𝑎𝑥 = 22
and 𝑖 ∈ 1, 2,… , 15.

1070 custom and 100 standard JPEG quantization tables. Considering
only the matrices with 𝑞1𝑖 ≤ 𝑞1𝑚𝑎𝑥 = 22 and 𝑖 ∈ 1, 2,… , 15, 919
tables (both custom and standard) were selected and the empirical
distribution of differences between consecutive quantization factors in
zig-zag order were built. As shown in Fig. 3, neighboring elements
in the quantization matrices (zig-zag order) are usually associated to
similar values (i.e., their difference is close to zero).

Considering then a set of 𝑛 consecutive first quantization factors to
be estimated, a cost function 𝐶 can be designed as the weighted average
of a data term (𝐶𝑑𝑎𝑡𝑎) and a regularization term (𝐶𝑟𝑒𝑔):

𝐶 = 𝑤 ⋅ 𝐶𝑑𝑎𝑡𝑎 + (1 −𝑤) ⋅ 𝐶𝑟𝑒𝑔 (2)

where 𝑤 ∈ [0, 1], 𝐶𝑑𝑎𝑡𝑎 is a cost term related to the goodness of the
estimation of first quantization factors under analysis, and 𝐶𝑟𝑒𝑔 is a reg-
ularization term that tries to minimize differences among neighboring
𝑞1 values.

An equation similar to (2) has been already proposed in [29] where
data used to compute the 𝐶𝑑𝑎𝑡𝑎 term were obtained employing an
algorithm based on nearest neighbors. However, the main limit of the
regularization approach proposed in [29] was the strategy adopted
to compute the cost function 𝐶. That solution actually considered all
the combinations of the 𝑛 consecutive quantization factors. Such as
example, if 𝑞1𝑚𝑎𝑥 is 22, 22𝑛 combinations, and then evaluations of the
cost function 𝐶, have to be performed (𝑛 = 3 in [29]).

To increase the number of consecutive elements to be considered,
an analysis of the output of the proposed CNN was performed. Also in
presence of challenging conditions (e.g., multiples), the softmax output
could provide useful information that can be exploited to limit the set
of 𝑞1 to be taken into account. Specifically, the softmax output is a
vector made up of 𝑞1𝑚𝑎𝑥 values that can be interpreted as probabilities
(they are all positives and sum to one). In Fig. 4 is reported the softmax
output computed by the proposed CNN with an histogram obtained
from a double compressed 128 × 128 patch with 𝑞1 = 5 and 𝑞2 = 5.
Although the estimation provided by the network is wrong (i.e., the
first quantization factor reporting the maximum value is 𝑞1 = 1), the
score associated to 𝑞1 = 5 (i.e., the correct value) is comparable with
the best one. It is worth noting that the probability associated to the
event 𝑞1 = 1 is 0.484 whereas the joint probability related to 𝑞1 = 1 or
𝑞1 = 5 is 0.959. A set of first quantization factors can be then selected
to achieve a satisfactory probability.
4

Fig. 4. An example of softmax output provided by the proposed CNN considering an
AC histogram obtained with 𝑞1 = 5 and 𝑞2 = 5.

Fig. 5. An example of 𝑞1 candidate selection from softmax output values provided by
the proposed CNN considering the same input of Fig. 4. Softmax outputs 𝑝𝑖 are sorted
in descending order, the cumulative sum is computed (in green) and compared with
a threshold 𝑡ℎ (in red). The first set of quantization factors whose cumulative sum is
higher than 𝑡ℎ are considered as candidates (1 and 5).

This behavior can be then exploited in different ways depending on
the specific scenario. The softmax output, interpreted as a probability,
could be used as a simple index of reliability of the estimate performed.
Such as example, considering a threshold value of 𝑡ℎ = 0.9, one or
multiple elements can be selected in the estimation of the quantization
matrix.

Another way to exploit this amount of knowledge is to help reducing
the number of first quantization factors to be considered as candidates
for the final estimation. Fixed a threshold 𝑡ℎ in the range [0, 1], and
denoted as 𝑝𝑖 the output provided by the softmax function with respect
to the event 𝑞1 = 𝑖, the smallest set of first quantization factors whose
summation of related 𝑝𝑖 is higher than 𝑡ℎ is selected. The quantization
factors belonging to this set can be easily collected sorting probabilities
𝑝𝑖 in decreasing order and computing the cumulative sum. For instance,
considering the softmax outputs depicted in Fig. 4 and 𝑡ℎ = 0.95 only
two 𝑞1 (1 and 5) are selected (see Fig. 5).
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Fig. 6. Accuracies of the trained CNNs at varying of patch size and 𝑞1, 𝑞2 combinations. Average values were computed with respect to the first 15 DCT coefficients.
Further details about data and regularization terms and parameter
settings (e.g., 𝑤 and 𝑛) are provided in Section 4.1.

The following Algorithm 1 summarizes the estimation of the first 𝑘
quantization factors employing the trained networks.

Algorithm 1 The Proposed FQE Method
Input: double compressed image 𝐼 ′′

Output: {𝑞11, 𝑞12,… , 𝑞1𝑘}
Initialization : 𝑘

1: for 𝑖 = 1 to 𝑘 do
2: ℎ𝑖 : (empirical) distribution of 𝑖-th DCT coefficient
3: 𝑞2𝑖 : quantization factor of 𝑄2 for 𝑖-th DCT
4: if (𝑖 = 1) then
5: 𝑛𝑒𝑡 ∶ 𝐷𝐶𝑞2𝑖 trained network
6: else
7: 𝑛𝑒𝑡 ∶ 𝐴𝐶𝑞2𝑖 trained network
8: end if
9: 𝑞1𝑖 ∶ predicted by 𝑛𝑒𝑡

10: end for
11: regularize({𝑞11, 𝑞12,… , 𝑞1𝑘})
12: return {𝑞11, 𝑞12,… , 𝑞1𝑘}

4. Overall analysis

As already pointed out in Section 3, the proposed solution differ-
ently than previous works was specifically designed to work with a
5

wide set of 𝑄2 matrices. For each 𝑞2, two CNNs related to DC and AC
terms were trained by employing the parametric architecture depicted
in Fig. 2. Although the designed CNN, taking as input DCT histograms,
is not strictly limited to be used with a specific patch size, the accuracy
with respect to different input parameters was also evaluated. More
specifically, for each patch size 𝑑 ∈ {64, 128, 256, 512}, 2 ⋅ 22 CNNs
were trained with empirical histograms from double compressed JPEG
images (see Section 3.2). Each dataset, one per patch size, was split
into 80% training, 10% validation and 10% test and exploited to train
4 sets of 2⋅22 CNNs. Each group of CNNs is then trained with histograms
obtained from input patches of the same size. It has to be noted that
histograms containing no information [36] have been removed and
were not considered in our tests. Results of the proposed CNNs at
varying of patch size and 𝑞1, 𝑞2 combinations are reported in Fig. 6
where average values are computed with respect to the first 15 DCT
coefficients. The obtained accuracies strictly depend on the amount of
information contained in the input histogram (higher at increasing of
patch size) and on the combination of 𝑞1 and 𝑞2 values (e.g., multiples).
It is worth noting that the reported results were computed considering
both training and test set related to input patches of the same size. To
further study the performance of the proposed solution, additional tests
were performed considering a scenario with a mismatch between train
and test set patch size. Table 1 shows the average accuracy, computed
with respect to 𝑞1 ∈ {1, 2,… , 22}, 𝑞2 ∈ {1, 2,… , 22} and the first 15
DCT terms, achieved by each couple dataset/CNN. As expected, it is
evident that, for each dataset, the best result corresponds to the CNN
trained with images of the same size. Note that scenarios involving both
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Table 1
Accuracies of the CNNs trained with a specific patch size with respect to all the four
generated test datasets (𝑑 ∈ {64, 128, 256, 512}). Average values were computed with
respect to 𝑞1 ∈ {1, 2,… , 22}, 𝑞2 ∈ {1, 2,… , 22} and the first 15 DCT terms. Each test set
is a subset (10%) of the related one described in Section 3.2 built employing constant
matrices for first and second compressions and images from RAISE [32] collection.

Test set CNN trained with

64 × 64 128 × 128 256 × 256 512 × 512

64 × 64 0.44 0.43 0.41 0.38
128 × 128 0.53 0.54 0.53 0.50
256 × 256 0.57 0.62 0.63 0.62
512 × 512 0.58 0.65 0.70 0.71

Table 2
Accuracies of the CNN ensembles with respect to all the four generated test datasets
(𝑑 ∈ {64, 128, 256, 512}). Average values were computed with respect to 𝑞1 ∈
{1, 2,… , 22}, 𝑞2 ∈ {1, 2,… , 22} and the first 15 DCT terms.

Test set CNN

𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒2 𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒4 𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒8
64 × 64 0.4447 0.4443 0.4434
128 × 128 0.5425 0.5420 0.5411
256 × 256 0.6302 0.6295 0.6282
512 × 512 0.7070 0.7059 0.7046

standard and custom quantization matrices actually select a subset of
the possible 𝑞1, 𝑞2 combinations. Reported average accuracies are then
not the same of the ones shown in Section 5.

As already pointed out in Section 3.1, the proposed solution, taking
as input DCT histograms, does not strictly depend on a specific patch
size. In order to improve the overall effectiveness and usability of the
method, a single set of networks can be then trained with multiple
patch sizes avoiding then the selection of a specific group of CNNs for
each patch size. This improvement can be also really useful whenever
input patch size actually differs from the one employed to train the
models (e.g., 96 × 96, 384 × 512, etc.).

A novel dataset was then built by simply merging the collections
employed before with 𝑑 ∈ {64, 128, 256, 512}. However, the data to
be handled requires a large amount of memory resources. In order to
train the proposed method as the patch size varies, while exploiting
all available data, a solution based on ensemble of CNNs was consid-
ered. Specifically, the merged dataset was split into 10 subdatasets, 8
employed for training, 1 for validation and 1 for test. Three CNN ensem-
bles were considered with the following strategy: 𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒𝑚 represents
an ensemble of 𝑚 CNNs trained with 8∕𝑚 training subdatasets 𝑚 ∈
{2, 4, 8}. As reported in Table 2 all the proposed ensembles, differently
than CNNs trained with fixed patch size, achieve satisfactory accuracy
in all the considered test sets 𝑑 ∈ {64, 128, 256, 512}. Although all
the considered models achieve comparable accuracy (𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒2 slightly
better than remaining ones), the solution with 𝑚 = 2 does not increase
considerably the execution time with respect to the networks trained
with a fixed patch size.

4.1. Regularization (parameter settings)

To better justify the design choices related to the regularization
approach described in Section 3.4 several tests were performed. Specif-
ically, four double compressed datasets obtained cropping central
patches with 𝑑 ∈ {64, 128, 256, 512}, from 1000 images selected from
BOSSBASE collection [33] were built. This collection was considered
in the parameter setting to limit the overfitting with respect to the
dataset employed to train the CNNs (i.e., RAISE [32]). To cope with real
scenarios, double compression is performed employing custom tables
from [35] by considering only the matrices with 𝑞1𝑖 ≤ 𝑞1𝑚𝑎𝑥 = 22 and
𝑖 ∈ 1, 2,… , 15. Two different 𝐶𝑑𝑎𝑡𝑎 terms were considered:

𝐶𝑑𝑎𝑡𝑎1 = 1 − 1
𝑛

𝑖+⌊𝑛∕2⌋
∑

𝑝𝑗 (3)
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𝑗=𝑖−⌊𝑛∕2⌋
Fig. 7. Average accuracy of the proposed regularization solution considering 𝑛 = 3
neighbors and all the combinations of 𝐶𝑑𝑎𝑡𝑎 and 𝐶𝑟𝑒𝑔 formulas.

𝐶𝑑𝑎𝑡𝑎2 = −1
𝑛

𝑖+⌊𝑛∕2⌋
∑

𝑗=𝑖−⌊𝑛∕2⌋
log 𝑝𝑗 (4)

where 𝑖 indicates the position (zig-zag order) of the DCT term under
analysis, 𝑛 the number of considered neighbors and 𝑝𝑗 the probability
(i.e., softmax output) provided by the proposed CNN at position 𝑗
related to 𝑞1𝑗 .

Moreover, two different 𝐶𝑟𝑒𝑔 terms have been investigated:

𝐶𝑟𝑒𝑔1 =
1

𝑛 − 1

𝑖+⌊𝑛∕2⌋
∑

𝑗=𝑖−⌊𝑛∕2⌋+1
|𝑞1𝑗 − 𝑞1𝑗−1| (5)

𝐶𝑟𝑒𝑔2 =
2

𝑛 − 1

𝑖+⌊𝑛∕2⌋
∑

𝑗=𝑖−⌊𝑛∕2⌋+1

|𝑞1𝑗 − 𝑞1𝑗−1|
𝑞1𝑗 + 𝑞1𝑗−1

(6)

where 𝑞1𝑖 is the first quantization candidate at position 𝑖 (zig-zag order)
under analysis.

In Fig. 7 are reported the average accuracies obtained employing
(2) considering all the possible combinations of 𝐶𝑑𝑎𝑡𝑎 ((3), (4)) and 𝐶𝑟𝑒𝑔
((5), (6)) with 𝑛 = 3. For each weighting factor 𝑤, the average accuracy
is computed taking into account the four aforementioned datasets
(𝑑 ∈ 64, 128, 256, 512) and the DCT coefficients. Best performances are
obtained with 𝐶𝑑𝑎𝑡𝑎2 and 𝐶𝑟𝑒𝑔1. An additional test was carried out with
𝐶𝑑𝑎𝑡𝑎2 and 𝐶𝑟𝑒𝑔1 at varying of the number of neighbors 𝑛 ∈ {3, 5, 7}
and weighting factor 𝑤. Moreover, to make results comparable with
respect to different number of neighbors 𝑛, only positions 𝑖 = 4,… , 12
are considered in the parameter setting tests. Note that, although the
regularization strategy described in Section 3.4 considerably reduces
the average number of combinations, worst case scenario has to be
avoided. To this aim, the maximum number of allowed combinations
per estimation was set to 106. As can be easily seen from Fig. 8, 𝑛 = 7
and 𝑤 = 0.43 provide the best results.

5. Experimental results

In order to demonstrate the effectiveness of the proposed method, a
series of comparisons with the state-of-the-art solutions were carried
out. The device employed to run the experiments was an hardware
equipped with a GPU NVIDIA TESLA K80. Both statistical [19,21,22,37]
and machine learning approaches [27–29] were selected for compari-
son. The original code provided by the authors of the aforementioned
state-of-the-art solutions was employed. Moreover, to cope with real
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Fig. 8. Average accuracy computed considering 𝐶𝑑𝑎𝑡𝑎2 and 𝐶𝑟𝑒𝑔1 (best combinations)
at varying of 𝑛 (i.e., number of neighbors). Note that 𝑤 = 1 actually corresponds to
results achieved without employing any regularization.

scenarios, both standard and custom matrices have also been consid-
ered in our tests. Finally, as already described in state-of-the-art, high
frequencies are usually killed by the JPEG compression and after a
certain position the values are zero (the so-called ‘dead-zone’). An
acceptable trade-off employed by the community is the usage of 𝑘 = 15.
Tests described in the following sections, for sake of comparison, were
then performed with 𝑘 = 15.

5.1. Comparison test

Some recent state-of-the-art solutions have been designed to work
with specific patch sizes [27,28]. To properly compare the proposed
method with the aforementioned approaches, a first series of tests were
then performed considering several scenarios involving 64 × 64 patches
as input. Moreover, the effectiveness of the proposed solution has
been demonstrated considering both statistical [19,21,22,37] and ma-
chine learning methods [27–29]. Specifically, four double compressed
datasets were generated starting from random 64 × 64 patches cropped
from RAISE collection [32] (one patch for each RAISE image):

1. 𝑄𝐹1 ∈ {55, 60, 65, 70, 75, 80, 85, 90, 95, 98}, 𝑄𝐹2 = 90
2. 𝑄𝐹1 ∈ {55, 60, 65, 70, 75, 80, 85, 90, 95, 98}, 𝑄𝐹2 = 80
3. 𝑄1 ∈ {5, 6, 7, 8, 9, 10, 11, 12}, 𝑄𝐹2 = 90
4. 𝑄1 ∈ {5, 6, 7, 8, 9, 10, 11, 12}, 𝑄𝐹2 = 80

where 𝑄1 ∈ {5, 6, 7, 8, 9, 10, 11, 12} of (3) and (4) are referred to Photo-
shop’s quantization matrices (version 20.0.4).

Datasets (1) and (2) are actually related to a classical scenario in-
volving only standard quantization matrices whereas, datasets (3) and
(4), employing also Photoshop’s quantization tables, can be considered
a more challenging test to verify the robustness of the considered meth-
ods with respect to real conditions (i.e., custom quantization matrices).
Note that Dalmia et al. [22] has not been taken into account in the com-
parisons involving dataset (3) and (4) due to the assumptions about the
standard matrices of first compression in the provided implementation.

As reported in Table 3, where a classical scenario involving standard
quantization matrices is considered, the proposed approach outper-
forms state-of-the-art solutions in almost all combinations. These results
are also confirmed in Figs. 9(a) and 9(b) with performances analyzed at
varying of DCT coefficients. Moreover, the robustness of the proposed
solution at varying of the employed quantization matrices has been
tested with custom tables. As reported in Table 4 and Figs. 9(c) and
7

Table 3
Accuracies obtained by the proposed approach (with and without regularization)
compared to Bianchi et al. [19], Galvan et al. [21], Dalmia et al. [22], Niu et al.
[27], Tondi et al. [28], Battiato et al. [37] and Battiato et al. [29] with different
combinations of 𝑄𝐹1/𝑄𝐹2, considering standard quantization tables.
𝑄𝐹1 𝑄𝐹2 = 90

Our Our reg. [19] [21] [22] [27] [28] [29] [37]

55 0.84 0.80 0.53 0.52 0.45 0.00 0.00 0.77 0.62
60 0.81 0.86 0.53 0.56 0.47 0.64 0.53 0.82 0.66
65 0.84 0.84 0.54 0.57 0.49 0.54 0.81 0.81 0.68
70 0.83 0.88 0.43 0.57 0.51 0.66 0.66 0.85 0.70
75 0.89 0.89 0.41 0.63 0.53 0.77 0.93 0.85 0.75
80 0.89 0.87 0.29 0.61 0.45 0.81 0.67 0.83 0.75
85 0.86 0.90 0.14 0.74 0.36 0.81 0.88 0.85 0.72
90 0.40 0.12 0.00 0.00 0.00 0.02 0.02 0.24 0.23
95 0.50 0.62 0.11 0.00 0.00 0.78 0.68 0.52 0.40
98 0.36 0.76 0.00 0.00 0.00 0.76 0.91 0.57 0.41

MEAN 0.72 0.75 0.30 0.42 0.33 0.58 0.61 0.71 0.59

𝑄𝐹1 𝑄𝐹2 = 80

55 0.76 0.61 0.36 0.37 0.37 0.24 0.52 0.58 0.49
60 0.66 0.65 0.27 0.37 0.38 0.50 0.31 0.60 0.47
65 0.67 0.71 0.19 0.41 0.43 0.31 0.38 0.65 0.52
70 0.72 0.82 0.19 0.50 0.49 0.50 0.70 0.75 0.66
75 0.67 0.65 0.07 0.56 0.45 0.15 0.58 0.56 0.47
80 0.13 0.05 0.00 0.00 0.00 0.00 0.04 0.11 0.04
85 0.56 0.53 0.19 0.00 0.00 0.04 0.14 0.34 0.31
90 0.34 0.40 0.06 0.00 0.00 0.48 0.37 0.19 0.21
95 0.11 0.35 0.00 0.00 0.00 0.95 0.37 0.30 0.19
98 0.09 0.43 0.01 0.00 0.00 0.21 0.48 0.42 0.19

MEAN 0.47 0.52 0.13 0.22 0.21 0.28 0.39 0.45 0.36

Table 4
Accuracies obtained by the proposed approach (with and without regularization)
compared to Bianchi et al. [19], Galvan et al. [21], Niu et al. [27], Tondi et al.
[28], Battiato et al. [37] and Battiato et al. [29] employing custom tables for first
compression. The column 𝑃𝑆 refers to the quality (and then custom tables) used by
Photoshop.
𝑃𝑆 𝑄𝐹2 = 90

Our Our reg. [19] [21] [27] [28] [29] [37]

5 0.86 0.84 0.56 0.58 0.05 0.10 0.78 0.69
6 0.91 0.88 0.46 0.60 0.07 0.13 0.82 0.75
7 0.86 0.85 0.41 0.58 0.07 0.09 0.83 0.70
8 0.86 0.86 0.25 0.65 0.10 0.13 0.81 0.74
9 0.67 0.76 0.02 0.47 0.02 0.05 0.61 0.47
10 0.60 0.72 0.19 0.00 0.25 0.33 0.50 0.43
11 0.40 0.69 0.04 0.00 0.69 0.75 0.52 0.40
12 0.36 0.76 0.04 0.00 0.75 0.85 0.57 0.41

MEAN 0.69 0.80 0.25 0.36 0.25 0.30 0.68 0.58

𝑃𝑆 𝑄𝐹2 = 80

5 0.72 0.72 0.26 0.46 0.07 0.08 0.68 0.57
6 0.53 0.68 0.05 0.41 0.02 0.06 0.54 0.42
7 0.72 0.74 0.15 0.48 0.08 0.10 0.68 0.56
8 0.33 0.35 0.03 0.03 0.01 0.04 0.22 0.18
9 0.49 0.54 0.19 0.00 0.07 0.13 0.28 0.28
10 0.23 0.47 0.00 0.00 0.40 0.16 0.20 0.17
11 0.09 0.39 0.01 0.00 0.24 0.38 0.38 0.23
12 0.09 0.43 0.01 0.00 0.21 0.44 0.42 0.26

MEAN 0.40 0.54 0.09 0.18 0.17 0.14 0.42 0.33

9(d), the gain in terms of achieved accuracy of the proposed approach
with respect to the other CNN-based methods [27,28] increases consid-
erably. Differently than the proposed approach, end-to-end CNN solu-
tions employed in [27,28] suffer in presence of quantization matrices
that have not been considered in their training process.

5.2. Generalizing test

Most of state-of-the-art methods have been designed and tested
considering standard quantization tables. However, as reported in [35]
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Fig. 9. Accuracies of the same methods described in Tables 3 and 4 at varying of the quantization factors 𝑞1𝑖 to be predicted. The values are averaged over all the 𝑄𝐹1∕𝑄1.
analyzing JPEG images downloaded from Internet, custom quantization
tables are often employed in the compression pipeline. To further
demonstrate the robustness of the proposed solution with respect to
the employed quantization matrices an additional test was performed.
Specifically, Park et al. in [35] collected 1170 quantization matrices
8

(100 standard and 1070 custom) retrieved by real scenarios. This col-
lection was exploited to carry out further tests: the matrices with 𝑞1𝑖 ≤
𝑞1𝑚𝑎𝑥 = 22 and 𝑖 ∈ {1, 2,… , 15} were selected, sorted by the average
of the first 15 quantization factors and then split into three sets (called
Low, Mid, High) of 291 elements. Due to the double compression, 9
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Fig. 10. Comparison between the proposed solution, Battiato et al. [37] and Battiato et al. [29] considering custom tables from [35] and patches from RAISE dataset at varying
of 𝑑 ∈ {64, 128, 256, 512}. L, M, and H represent respectively the sets of matrices Low, Mid and High described in Section 5.2.
Fig. 11. Comparison between the proposed solution, Battiato et al. [37] and Battiato et al. [29] considering custom tables from [35] and patches from UCID dataset at varying
of 𝑑 ∈ {64, 128, 256, 512}. L, M, and H represent respectively the sets of matrices Low, Mid and High described in Section 5.2.
different combinations (every ordered couple among Low, Mid and
High) have been then considered. Moreover, to study the performance
in the wild conditions 8 different input datasets were created: 4 differ-
ent patch sizes (64 × 64, 128 × 128, 256 × 256, 512 × 512) cropped
from RAISE [32] and UCID [34]. For each dataset, the quantization
tables employed for double compression were randomly selected from
the 291 available in the corresponding set (Low, Mid, High). It is worth
to note that UCID dataset, due to the different resolution of the original
images used to extract patches vs. the collection employed to train
the CNNs (i.e., RAISE [32]), allow us to verify the robustness of the
proposed solution with respect to the variability of the dataset.

As can be seen from Figs. 10 and 11 the proposed approach achieves
satisfactory accuracy even in this challenging scenario. In addition, the
results are closely related to the amount of information contained in
the input histogram. An higher accuracy is therefore obtained as the
patch size increases and with UCID dataset [34].

5.3. Tampering localization

FQE can be simply employed to perform tampering localization. The
classical scenario is the following one: a copy-paste of JPEG image
(foreground image) is applied on a JPEG image (background image)
9

in order to add or hide some information. To localize the tampered
areas a sliding window approach can be applied, getting a map for each
DCT coefficient; every window estimation represents a pixel and values
related to tampered areas must be different than the other ones. We
conducted a test with the following parameters. Starting from a JPEG
image compressed with 𝑄𝐹 = 60 (the background image, Fig. 12 in the
top) 2 tampering were applied: the first one is a copy-move of a patch
extracted from the same background image, compressed with 𝑄𝐹 = 90
and moved in the top-left corner of the image while the second one
is an external image JPEG compressed with 𝑄𝐹 = 80 and applied in
the bottom-right corner. The image was then compressed again with
𝑄𝐹 = 90 obtaining the tampered image depicted in Fig. 13 (bottom). To
localize tampered regions, FQE estimation was done with our method
for every patch 64 × 64 of a sliding window moved 8 pixel each time
(in both the directions). For each DCT coefficient, starting from the
values provided by the FQE algorithm, a mask can be generated. As
can be seen from Fig. 14, tampered regions can be easily detected
from the generated masks. Future steps of this work will include the
analysis of the FQE in presence of different types of manipulations [38]
but also in presence of artifacts introduced by the normal life cycle of
an image (e.g., the manipulation introduced by the upload on Social
platforms [39]).
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Fig. 12. Original image compressed with 𝑄𝐹 = 60.
Fig. 13. Tampered image employed in the test. Several patches have been added to the original image (Fig. 12) and a second compression with 𝑄𝐹 = 90 is performed.
6. Conclusion

The estimation of the first quantization matrix is useful to recover
information about the history of the image under analysis mainly
for forensics purposes. In this paper, a novel CNN-based estimation
solution has been proposed in the aligned scenario. By proper collecting
and training a neural architecture by considering 1D-histograms of
10
DCT values (AC and DC terms) the proposed method outperforms
state-of-the-art solutions by a large margin. Moreover, experiments
results carried out in challenging scenarios, confirmed the robustness
of the designed solution with respect to input patch size, quantization
matrix (both standard and custom) and employed datasets (RAISE and
UCID). A regularization strategy devoted to improve overall results
in challenging conditions (i.e., quite homogeneous patches, specific
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Fig. 14. Masks obtained for each coefficient, from 1 (top-left), to 15 (bottom-right) in zig-zag order.
relations among quantization factors) that are complex to deal with
considering only information contained in a single DCT histogram has
been also designed. Future works will be devoted to further extend the
proposed solution to the non-aligned case and other forensics tasks such
as tampering detection/localization.
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