
A Bloom Filter Application for
Processing Big Datasets through

MapReduce Framework

Assoc. Prof. Milko Marinov
Dept. of Computer Systems & Technologies
University of Ruse, Bulgaria

The Outline
Introduction
Architecture analysis of Hadoop 2
Bloom filter general characteristics
Bloom filter implementation on MapReduce framework
Bloom filter use cases
Conclusion

1

The main objective of the current research is to analyse the architecture
and components of Hadoop 2.x with reference to identifying the factors
which influence the productivity of MapReduce jobs. Based on this
analysis and considering the advantages of probabilistic data structures,
the study offers a Bloom filter implementation in a MapReduce
framework environment.

Interaction of a YARN application

Architecture analysis of Hadoop 2
The main purpose of YARN is to separate resource
management from the planning and monitoring of tasks.
By separating resource management functions from the
program model, YARN performs many tasks related to
scheduling the components required for each job. In this
way, it is completely removed from the static allocation of
resources needed to implement the Map and Reduce
functions, considering the resources of the cluster as a
continuous space.
In the second Hadoop version MapReduce is
implemented as a YARN application.
MapReduce is a programming model which runs on a
cluster of commodity servers and is based on the shared-
nothing architecture.
The main operation performed by the Map function is to
transform input data into intermediary key-value pairs.
During the Reducing phase execution, each key-value
pair must be checked to find out if the query condition is
met.

2

An example of the Bloom filteringter with
m=12 bits and k=3 hash functions

Bloom filter general characteristics
The Bloom filter is a probabilistic data structure that
requires very little space to represent a set of elements. It
also supports a mechanism that verifies whether an
element belongs to the set.
The Bloom filter supports two operations, namely inserting
an element and telling if an element is present in a set.
The size of the filter (m), the total number of elements
inserted in the filter (n) and the number of hash functions
(k) used in the filter determine its accuracy.
The probability of false positive results (p) depends on the
number of added elements, i.e., when the number of
elements added to the Bloom filter increases, the
probability of obtaining false positive results also increases.
When an element is inserted to the filter, it is fed to each of
the k hash functions and an array consisting of k elements
is formed.
When a request for an element is sent (checking if the
element is a member of the set), it is passed to each of the k
hash functions.

3

Structure of the Bloom filtering

Bloom filter implementation on MapReduce framework
The process is divided into two steps.
First, the filter must be trained from the set of “hot
values”. This is done by loading the data from
where it is stored and adding each item to the
Bloom filter. The resulting data object is stored in
HDFS.
Second, the actual filtering must be done. The
Bloom filter is loaded from the distributed cache
when the Map task is started. Then, in the Map
function, an iteration is undertaken through the
records and the Bloom filter checks for
membership in the “hot values” list. The recording
is saved or rejected depending on the Bloom filter
affiliation test. The record is forwarded or not
based on the Bloom filter membership test.
A Reduce task is not executed because the records
are analysed one by one and aggregation is not
performed.

4

Bloom filter application in defining a remote
intersection of two datasets

Bloom filter implementation on MapReduce framework
A Bloom filter can be used to reduce a large number of
unnecessary operations in any application where it is
necessary to run a check on the presence or absence of
an item before an expensive operation.
One of the main applications of the Bloom filter is to
present very large datasets in different applications. A
dataset with millions of elements can take up gigabytes
of memory. In addition, expensive input-output
operations must be performed to transfer data from
the disk. The Bloom filter can drastically reduce the
number of bytes needed to represent datasets, allowing
them to fit in the memory and reduce the time
required for their reading.
Reducing the number of database queries that return
a lot of empty or negative results is a common
application of the Bloom filters. By performing an
initial Bloom filter test, the application can skip plenty
of negative results even before sending the query to
the database.

5

Conclusion
The outlined suggestion for implementing a Bloom filter in the
MapReduce framework environment provides good productivity and
does not require considerable costs because the Bloom filter is loaded
from the distributed cache. The value checking operation in the Bloom
filter is also relatively inexpensive as each test is performed for a
constant period of time. The Bloom filter is an ideal way to replace the
presented value lists.
Apart from this fact, however, the impact of false positive results must
be carefully assessed before it is used for a specific application. When
the Bloom filter is used in a distributed MapReduce framework, it is
difficult to train actively the filter (very often, constantly) as it is done
in a database. Once the Bloom filter is trained, separated in parts, and
sent to HDFS, it can be easily read and used by other applications

6

	A Bloom Filter Application for Processing Big Datasets through MapReduce Framework
	The Outline�
	Architecture analysis of Hadoop 2���
	Bloom filter general characteristics���
	Bloom filter implementation on MapReduce framework����
	Bloom filter implementation on MapReduce framework����
	Conclusion�

