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ABSTRACT

Object-oriented languages provide little support for encap-
sulating objects. Reference semantics allows objects to es-
cape their defining scope. The pervasive aliasing that ensues
remains a major source of software defects. This paper in-
troduces Kacheck/J a tool for inferring object encapsulation
properties in large Java programs. Our goal is to develop
practical tools to assist software engineers, thus we focus on
simple and scalable techniques. Kacheck/J is able to infer
confinement for Java classes. A class and its subclasses are
confined if all of their instances are encapsulated in their
defining package. This simple property can be used to iden-
tify accidental leaks of sensitive objects. The analysis is
scalable and efficient; Kacheck/J is able to infer confinement
on a corpus of 46,000 classes (115 MB) in 6 minutes.

1. INTRODUCTION

Object-oriented languages rely on reference semantics to al-
low sharing of objects. Sharing occurs when an object is
accessible to different clients; an object is aliased when it
is accessible from the same client through different access
paths. Sharing is both a powerful tool and a source of subtle
program defects. A potential consequence of aliasing is that
methods invoked on an object may depend on each other in
a manner not anticipated by designers of those objects, and
updates in one sub-system can affect apparently unrelated
sub-systems, undermining the reliability of the program.

While object-oriented languages provide linguistic support
for protecting access to variables, methods, and even entire
classes, they fail to provide any systematic way of protect-
ing objects. A class may well declare some variable private
and yet return the contents of that variable from a public
method. In other words, object-oriented languages protect
the state of individual objects, but cannot guarantee the
integrity of systems of interacting objects. They lack a no-
tion of an encapsulation boundary that would ensure that
references to ‘protected’ objects do not escape.

The goal of this paper is to experiment with pragmatic no-
tions of encapsulation in order to provide software engineers
with tools to guide them in the design of robust systems.
To this end, we focus on simple models of encapsulation
that can easily be understood. We deliberately ignore more
powerful escape analyses [2, 3, 9] which are sensitive to small
source code changes and return results that may be difficult
to interpret. Of course, the tradeoff is that our analysis will
sometime deem an object as ’escaping’ when a more precise
analysis would discover that this is not the case.

‘We have chosen to investigate confined types [5] as they give
rise to a form of encapsulation that is both simple to under-
stand and that can be checked with little cost. The basic
idea underlying confined types is the following:

Objects of a confined type are
encapsulated in their defining package.

Thus, if a class is confined, instances of that class and all
of its subclasses cannot be manipulated by code belonging
to other packages. In terms of aliasing, confinement allows
aliases within a package but prevents them from spreading
to other packages as illustrated graphically in Figure 1.
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Figure 1: Objects in package outside cannot hold refer-
ences to objects encapsulated in package inside.

The definition of confinement in [5] requires explicit annota-
tions and thus pre-supposes that software is designed with
confinement in mind. In this work we take a different ap-
proach: Kacheck/J infers confinement in existing Java pack-
ages. We begin with the following controversial thesis:

Thesis: All package-scoped classes in Java
programs should be confined.

Furthermore, we show that a majority of large Java appli-
cations were written such that confinement would hold for
package-scoped classes. In other words, confinement is a
natural property to expect of package-scoped classes and



one that should be enforced by compilers. To validate our
hypothesis we gathered a large number of Java programs
(46,000 class files—to the best of our knowledge the largest
such benchmark suite) and implemented the Kacheck/J tool
to infer confinement properties of these classes. The results
of our analysis show that without any change to source pro-
grams, 3,998 classes (or 25% of the package-scoped classes)
are confined. Furthermore, we found that if one adds fea-
tures to Java that address the lack of generic container types,
then the number of confined types can be increased to over
4,800. Finally, we were surprised to discover that with ap-
propriate tool support, the number of confined classes can
be well over 14,500 for that same benchmark suite (or 32%
of all classes). Even though we can agree that there are valid
uses of package-scoped classes that break confinement, we
feel that these uses should be flagged and treated specially
rather than the converse.

While more powerful program analysis may yield higher
numbers of confined classes, especially if a whole-program
approach is taken, our current numbers are already surpris-
ingly high. Another pleasant surprise is that these results
can be obtained efficiently. The average time to analyze
a class file is less than 8 ms (or about 350s for the whole
benchmark suite) for a tool entirely written in Java running
on stock hardware.

The contributions of this paper are:

1. A simpler and less restrictive set of confinement rules
than in [5] (Section 3).

2. A constraint-based confinement analysis (Section 4).

3. A presentation of the Kacheck/J confinement inference
tool (Section 5).

4. Confinement results for a large-scale benchmark suite
(Section 6).

5. A discussion of refactorings aimed at improving con-
finement as well as proposals for better language sup-
port for confinement (Section 6).

2. AN EXAMPLE OF CONFINEMENT

In modern object-oriented programming languages such as
Java, confinement can be achieved by a disciplined use of
built-in access control mechanisms and some simple coding
idioms. We will give a simple motivating example and use
it to discuss our analysis.

Consider the class HashtableEntry used within the imple-
mentation of Hashtable in the Sun JDK’s java.util pack-
age. The access modifier for this class is set to default ac-
cess, which, in Java, means that the class is scoped by its
defining package. HashtableEntry instances are used to im-
plement linked lists of elements which have the same hash
code modulo table size. They are a prime example of an in-
ternal data structure which is only relevant to one particular
implementation of a hashtable and that should not escape
the context of Hashtable and definitely not of the defining
package java.util. Yet how can we be sure that code out-
side of the package cannot get access to a HashtableEntry
object?

Since HashtableEntry is package-scoped we need not worry
that outside code will create instances of the class. But in
case a public method were to return a HashtableEntry ob-
ject or a public field held a reference to such an object, out-
side code would be able to cast that reference to Object and
either store it or use it as an argument. The implementation
of Hashtable itself could cast a HashtableEntry object to
some public superclass, and then expose a reference to the
object. It is likely that a programmer would consider such
a scenario to be the result of a programming error, and a
good programmer would be careful and prevent such con-
finement breaches. One can view this as an escape problem:
can references to instances of a package-scoped class escape
their enclosing package? If not, then the objects of such a
class are said to be encapsulated in the package. In the ex-
ample at hand, HashtableEntry is indeed encapsulated as
programmers have carefully avoided exposing them to code
outside of the java.util package.

Kacheck/J discovers potential confinement violations and
returns a list of confined types for each package analyzed
by the tool. For instance, in the above example, the ex-
pected result of the analysis would be that HashtableEntry
is confined to the package java.util, while Hashtable is
not since it has been declared public. The analysis relies on
access modifiers of classes, fields and methods, along with
results of a simple intra-procedural analysis of the bytecode
of all methods defined in the enclosing package (this part
of the analysis performs confinement checks). Furthermore,
for package-scoped classes, the code of inherited methods
is also analyzed (this part of the analysis performs the so-
called anonymity checks). Figure 2 illustrates the checks
performed by the tool.

____________ Anonymity checks
Confinement checks

Jjava.util

Hashtable |
.

HashtableEntry |

Figure 2: Analysis overview. All classes in the enclosing
package, java.util in this case, are checked for confine-
ment. Parent classes of confined classes (e.g. Object) are
checked for anonymity. Client code need not be checked.

The analysis is modular since only one package needs to be
considered at a time; this turns out to be a key feature for
scalability. Furthermore, since client code is not required
when checking confinement, it is possible to use Kacheck/J
on library code.

In fact, our analysis infers that the class HashtableEntry is
not confined because the method clone is invoked on one of
its instances. The Hashtable’s clone method clones all of
the entries in the table. The problem with clone is that it
returns a copy of the receiver cast to Object.



Manual inspection of the code reveals that each invocation of
HashtableEntry.clone() is immediately followed by a cast
to HashtableEntry. Thus instances of the class do not es-
cape. But our analysis is not precise enough to discover that.
A simple and efficient fix is to refactor the code by replac-
ing HashtableEntry.clone() with a new method clone_
that returns a HashtableEntry. This refactoring is simple
enough and has the advantage of removing unnecessary type
casts.

Simplifying Assumptions
Kacheck/J operates under some simplifying assumptions
which we detail here.

Sealed packages

We assume that all classes of a package are known at analysis
time. This assumption is important for the analysis results
as a new class may break confinement of pre-existing classes
(e.g. creating a HashtableEntry and returning it from a
public method). In Java, user code may load new classes
which declare themselves a member of a package. There
are several possible approaches here. For example, pack-
ages loaded from a jar file may be declared sealed [14, 16],
in which case no user class can be added to that package.
Another solution would be to add support for incremental
confinement analysis as part of bytecode verification.

Reflection

The analysis assumes that reflection does not violate lan-
guage access control. In other words, it assumes that the
semantics of private, protected and default access modifiers
are respected by the reflection mechanisms. This assump-
tion can be violated by changing the settings of the Java
Security Manager. This may result in additional confine-
ment breaches.

Native code

Native methods are not checked by Kacheck/J and may
breach confinement. We assume that native methods de-
fined in the current package do not directly breach confine-
ment, while we make no assumptions about the behavior of
native methods defined in other packages. Manual inspec-
tion of a large number of native methods indicates that this
assumption is reasonable. Furthermore, we assume that na-
tive code in other parts of the system does not violate the
semantics of the language by ignoring access control decla-
rations.

3. CONFINED TYPES

The goal of confinement is to satisfy the following soundness
property:

Soundness: An object of confined type is en-
capsulated in the scope of that type.

In [5], the granularity of confinement is the package. Thus,
no instance of a confined type may escape the package in
which that type is defined. We say that instances of a con-
fined class are encapsulated in their defining package.

Confinement is enforced by two sets of constraints. The first
set of constraints, confinement rules, apply to the enclosing
package, the package in which the confined class is defined.

These rules track values of confined types and ensure that
they are neither exposed in public members, nor widened
to non-confined types. The second set of constraints, so-
called anonymity rules, applies to methods inherited by the
confined classes, potentially including library code, and en-
sures that these methods do not leak a reference to the dis-
tinguished variable this which may refer to an object of
confined type.

In this section, we adapt the rules of Bokowski and Vitek
to inference of confinement. The new rules are both simpler
and less restrictive (i.e., more classes can be shown con-
fined), while remaining sound. As in the original paper, the
rules presented here do not require a closed-world assump-
tion. Confinement inference is performed at the package
level. The rules assume that all classes in a package are
known and, for confined classes, that their superclasses are
available.

3.1 Anonymity Rules

Enforcing confinement relies on tracking the spread of en-
capsulated objects within a package and preventing them
from crossing package boundaries. We have chosen to track
encapsulated objects via their type. Thus, a confinement
breach will occur as soon as a value of a confined type can
escape its package. Since we track types, widening a value
from a confined type to a non-confined type is a violation of
the confinement property.

Anonymity rules apply to inherited methods which may (but
do not have to) reside in classes outside of the enclosing
package. The goal of this set of rules is to prevent a method
from leaking a reference to the distinguished this pointer.
The motivation for these rules is that if this refers to an
encapsulated object, returning or storing it amounts to hid-
den widening. Thus, we say that a method is anonymous if
the following three rules hold.

Al An anonymous method cannot widen this to a
non-confined type.

A2 | An anonymous method cannot be native.

A3 | Methods invoked on this must be anonymous.

Figure 3: Anonymity rules.

The first rule prevents an inherited method from storing
or returning this unless the static type of this also hap-
pens to be confined. The second rule ensures that native
methods are never anonymous. While rules .A1 and A2 are
direct anonymity violations, the rule A3 tracks transitive vi-
olations. The call mentioned in rule A3 depends on the dy-
namic type of this (the target of the call). Thus, anonymity
of methods is determined in relation to a specific type.

3.2 Confinement Rules
Confinement rules are applied to all classes of a package. A
class is confined if it satisfies the five rules of Figure 4.



c1 All methods invoked on a confined type must be
anonymous.

C2 | A confined type cannot be public.

A confined type cannot appear in the type of a pub-
C3 | lic (or protected) field or the return type of a public
(or protected) method of a non-confined type.

C4 | Subtypes of a confined type must be confined.

c5 A confined type cannot be widened to a non-
confined type.

Figure 4: Confinement rules.

Rule C1 ensures that no inherited method invoked on a con-
fined type will leak the this pointer. This rule does not
preclude a confined type from inheriting non-anonymous
methods, as long as they are never called. Rule C2 prevents
public classes from being confined. Rule C3 ensures that
no exposed member (private or protected) is of a confined
type. This applies to all non-confined types in the package.
Rule C4 prevents non-confined classes (or interfaces) from
extending confined types. Finally, rule C5 prevents values
of confined type from being cast to non-confined types.

Exceptions are a case of widening which is not explicitly
listed in these rules. Instead, we consider that throw widens
its argument to the class Throwable, which is declared public
and thus violates rule C5.

Our confinement rules do not forbid packages from hav-
ing native code, but rule A2 explicitly states that native
methods are not anonymous. The motivation for this de-
sign choice is that while the developer of a package may
be expected to manually inspect native code in the current
package, it would be difficult to check native code of parent
classes belonging to standard libraries. Furthermore, uses of
this that violate .A1 are usually not perceived as bad behav-
ior for native code. Essentially, we assume that native code
within the enclosing package is, to some extent, trusted.

4. CONSTRAINT-BASED ANALYSIS

We use a constraint-based program analysis to infer method
anonymity and confinement. Constraint-based analyses have
previously been used for a wide variety of purposes, includ-
ing type inference and flow analysis. Constraint-based anal-
ysis proceeds in two steps:

1. Generate a system of constraints from program text.
2. Solve the constraint system.

The solution to the constraint system is the desired infor-
mation. In our case, constraints are of the following forms:
A = not-anon(methodId)
T not-conf(classId)
C 2= A|T|T=>A|A=>A| A>T | T=>T

A constraint not-anon(methodlId) asserts that the method

methodId is not anonymous; similarly, not-conf(classId) as-
serts that the class classld is not confined. The remaining
four forms of constraints denote logical implications. For
example, not-anon(A.m()) = not-conf(C) is read “if method
m in class A is not anonymous then class C will not be con-
fined.”

‘We generate constraints from the program text in a straight-
forward manner. The example of Figure 5 illustrates the
generation of constraints. For each syntactic construct, we
have indicated in comments the associated rule from Sec-
tion 3. Figure 6 details the constraints that are generated
for that example. A complete description of the constraints
generated from Java bytecode is given in Appendix A.

public class A {

A a;

public A m() {
a = this; // (A1)
new B().t(this); // (A1)
return this; // (A1)

}

native void o(); //  (A2)

}
class B extends A {
void t(A a) {}
ApO {
return this.m(); // (A3)
}
public A getD() {
return new D().p(); // (C1)

}
}
public class C { // (C2)
public D getD() { //  (C3)
return new D();
}
public D d = new D(); //  (C3)
}
class D extends B { //  (C4)
A getA() {
this.t(this); // (C5)
a = new D(); // (Cb)
return new D(); //  (C5)
}
}

Figure 5: Example program.

All our constraints are ground Horn clauses. Our solution
procedure computes the set of clauses not-conf(classId)
that are either immediate facts or derivable via logical im-
plication. This computation can be done in linear time.

Control Flow Analysis

The rule C1 poses a control flow problem as it mandates
that only methods that are actually invoked on a confined
type need to be anonymous. Any conservative control flow
analysis can be used to yield a set of candidate methods.
‘We have chosen to perform a simple flow insensitive analysis
that is practical and precise enough for our purposes.



Case || Constraint | Explanation

(A1) not-conf(A) = not-anon(A.m()) this widened to A

(A2) not-anon(A.o()) o is native

(A3) || not-anon(A.m()) = not-anon(B.p()) | B.p() calls m() with this being the receiver object

(C1) not-anon(D.p()) = not-conf(D) p() invoked on a D-object

(C2) not-conf(C) class C declared to be public

(C3) not-conf(C) = not-conf(D) public method C.getD() has return type D; public field C.d has type D
(C4) not-conf(D) = not-conf(B) D extends B

(C5) not-conf(A) = not-conf(D) D widened to A

Figure 6: The constraints generated from the example in Figure 5.

Since, by definition, confined types cannot be invoked from
outside of their defining package and cannot be widened to
non-confined types, the analysis only needs to record meth-
ods invoked on instances of a confined type. Thus, only
invocations of the type x.m(), where the type of x is con-
fined, need to be retained. This forms the root set for the
control flow analysis. Transitive calls from within a con-
fined method in this root set (e.g. this.m()) are recorded
by anonymity rule \A3. The type of x in x.m() is determined
as the union of the most general type inferred during byte-
code verification with all subtypes of that type that are ever
widened to it.

The analysis does not attempt to perform dead-code detec-
tion, so while the method that includes an invocation such
as a.m() may be dead, we will nevertheless add m to the
root set. This simplifies the analysis but costs some preci-
sion. Doing dead code detection would also lead to analysis
results that are much more sensitive to changes in the source
program. We strongly believe that the results of confinement
inference should be stable in the face of trivial changes to
the source program and that any changes should have only
local effects.

5. IMPLEMENTING KACHECK/J

Although the confinement and anonymity rules have been
described as source level constraints, we have chosen to im-
plement Kacheck/J as a bytecode analyzer. The main ad-
vantage of working at the bytecode level is the large number
of class files freely available. The implementation of Kach-
eck/J leverages the Open Virtual Machine project’s byte-
code verification framework.

In OVM, bytecode verification has been implemented using
the flyweight pattern. For each of the 200 bytecode instruc-
tions defined in the Java Virtual Machine Specification, the
OVM verifier creates an Instruction object that is respon-
sible for computing the effect this instruction will have on an
abstract state. Verification is a simple fixed-point iteration.
The verification starts with an initial state which includes
the instruction pointer, operand stack and variables. The
verifier follows all possible control flows within the method.

This flyweight approach allows us to use the OVM bytecode
verifier as a static analysis engine. We generate constraints
by subclassing only 9 of the 200 Instruction objects. These
special purpose instructions perform some simple checks and

record basic facts about the program execution. For in-
stance, the areturn instruction checks if this is used as
return value, and if so, it reports that this is widened to
the return type of the method. The invoke instructions
record dependencies like the use of this as an argument or
when a method is invoked on this.

Overall, the following changes were applied to the verifier:

e In non-static methods, local variable 0 (this) is tracked.

Uses of this are recorded.

All widenings are recorded.

Types of thrown exceptions are recorded.

Widenings are captured by intercepting subtype checks.

Anonymity checks only require slight modifications to the
code that simulates the nine instructions: a check is added to
record operations on this. See the Appendix A for details.

The flow analysis computes the implication chains for each
potentially confined type 71, such that

T, =>(A=>)"A=>T
is collapsed to
Ty = T1.

The constraints of the form 7" and T' = T are solved imme-
diately while they are recorded.

The code specific to confined types (including verbose re-
porting of violations) is about 5,600 lines. The code reused
from OVM (including class loading) is about 25,000 lines of
code. The current version of the OVM is about 74,000 lines
of code.

Example

Figure 7 gives an example of a chain of constraints that
results in classes being not confined. Mind that the tool
reorders parts of the solving process, while here only the
final chain of constraints is explained.

The method P.nonAnon () is not anonymous because it widens
this to java.lang.Object, which is a non-confined class



(because it is public). This will generate a constraint of
type C = A:

not-conf(Object) = not-anon(P.nonAnon())

The invocation of nonAnon in nonAnonInd with this as the
receiver generates a constraint of the type A = A:

not-anon(P.nonAnon())
= not-anon(B.nonAnonInd())

The method nonAnonInd() is invoked on C. By rule C1 a
constraint of the type A = C is generated:

not-anon(B.nonAnonInd () ) = not-conf(C)

As C extends B, a constraint of the type C = C is gener-
ated by rule C4:

not-conf(C) = not-conf(B)
Solving this constraint system will result in B and C being

non-confined (and P and X cannot be confined either because
they are public).

public class P {
public Object nonAnon() {

return this; // (1)
}
}
class B extends P {
public Object nonAnonInd() {
return this.nonAnon(); // (2)
}
}
class C extends B { // (3)
}

public class X {
public Object invocation() {
return new C() .nonAnonInd(); // (4)
}

Figure 7: Sample constraint chain.

6. RESULTS

Kacheck/J has been evaluated on a large data set. This
section gives an overview of the benchmark programs and
presents the results of the analysis. We also discuss ex-
tensions of Kacheck/J, coding idioms for confinement and
improved language support.

6.1 The Purdue Benchmark Suite

The Purdue Benchmark Suite (PBS) consists of 33 Java pro-
grams and libraries of varying size, purpose and origin. The
entire suite contains 46,165 classes (or 115 MB of bytecode)
and 1,771 packages. To the best of our knowledge the PBS
is the largest such collection of Java programs. Most of the
benchmarks are freely available and can be obtained from
the Kacheck/J web page.

Name || Description |

Aglets Mobile agent toolkit ag
AlgebraDB Relational database db
Bloat Purdue bytecode optimizer bl
Denim Design tool de
Forte Integrated dev. environment fo
GFC Graphic foundation classes gf
GJ Java compiler gj
HyperJ IBM composition framework hj
JAX Packaging tool ja
JDK 1.1.8 Library code (Sun) jl
JDK 1.2.2 Library code (Sun) j2
JDK 1.3.0 Library code (IBM) i3
JDK 1.3.1 Library code (Sun) j4
JavaSeal Mobile agent system js
Jalapeno 1.1 || Java JIT compiler jp
JPython Python implementation y
JTB Purdue Java tree builder jb
JTOpen IBM toolbox for Java jt
Kawa Scheme compiler kw
OVM Java virtual machine o4
Ozone ODBMS 0z
Rhino Javascript interpreter rh
SableCC Java to HTML translator sC
Satin Toolkit from Berkeley sa
Schroeder Audio editor sh
Soot Bytecode optimizer framework | so
Symjpack Symbolic math package sy
Tomcat Java servlet reference impl. tc
Toba Bytecode-to-C translator to
Voyager Distributed object system vy
Web Server Java Web Server ws
Xerces XML parser xe
Zeus Java/XML data binding ze

Figure 8: The Purdue Benchmark Suite (PBS v1.0).

Figure 9 gives an overview of the sizes, in number of classes,
for each program or library that is part of the PBS. Ap-
pendix B provides additional data about the benchmarks.
Our largest benchmarks, over 2,000 classes each, are Forte,
JDK 1.2.2, JDK 1.3.*, Ozone, Voyager and JTOpen. Ozone
and Forte are applications, while the others are libraries.
The number of package-scoped classes is indicated in light
gray for each application. This number is an upper bound
for the number of confined classes; public classes can not be
confined.
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Figure 9: Benchmark characteristics: program sizes.

Figure 10 relates the proportion of package-scoped mem-
bers to package-scoped classes. Package-scoped members



are fields and methods that are declared to have either pri-
vate or default access. Most coding disciplines encourage the
use of package-scoped methods and package-scoped classes.
Not surprisingly, programs that were designed with reuse in
mind, such as libraries and frameworks, are better-written
than one-shot applications. For instance, the Aglet work-
bench and JTOpen, both libraries, exhibit high degrees of
encapsulation. Forte is noteworthy because even though it
is an application, it has over 50% package-scoped classes and
members. Compilers and optimizers written in an object-
oriented style, such as Bloat, Toba and Soot, have high num-
bers of package-scoped classes because of the many classes
used to represent syntactic elements or individual bytecode
instructions. At the other extreme, we have applications
like Jax and Kawa which have almost no package-scoped
classes. It is also worth noting the increase in encapsula-
tion between different versions of the JDK. The percentage
of package-scoped classes doubled between JDK1.1.8 and
JDK1.3.1, while the absolute number of classes tripled.

s agfo
ip it

sh is

04

sy

9% package-scoped members

9% package-scoped classes

Figure 10: Benchmark characteristics: member en-
capsulation.

Coding style has an impact on confinement. While the re-
lation between package-scoped classes and confined types is
obvious, there is a more subtle connection between package-
scoped members and confined types: public and protected
methods can return potentially confined types. So it is rea-
sonable to expect that programs with low proportions of
package-scoped members will also have comparatively fewer
confined types.

6.2 Confined Types

Running Kacheck/J over the PBS yields 3,998 confined classes,

25% of the package-scoped classes are confined. Figure 11
shows confined classes in percentage of all classes. The
numbers are broken down per program with confined inner
classes in light gray. Raw numbers are given in Appendix B.

There are 6 programs where more than 40% of the package-
scoped types are confined (db, gf, jy, jb, jp, 04). It is inter-
esting to note that these programs have very little in com-
mon: they are a mix of libraries (gf), frameworks (04) and
applications (db, jy, jb, jp). Their ratio of package-scoped
classes and their sizes vary widely. Indeed, manual inspec-
tion of the programs indicates that programming style is
essential to confinement. For example, in early versions of
OVM and Kacheck/J, unit tests were systematically stored
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Inner classes
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Figure 11: Confined types.

in a sub-package of the current package. Some methods
and classes were declared public only to allow testing of the
code. This in turn prevented many classes from being con-
fined. The large number of confined inner classes in OVM
(04) comes from the objects representing bytecode instruc-
tions nested in an instruction set class. For Jalapeno, the
high confinement ratio (153 classes out of 994) is partially
the result of the single package structure of the program.
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Figure 12: Confinement and package-scoping.

Quite predictably, programs with very few package-scoped
classes (e.g. ja, kw, sh, gf) end up with few confined classes.
Figure 12 shows the relationship between package-scoped
classes and confined classes. The variability in this figure
is quite high. For instance, libraries like Aglets (ag) which
have very high ratios of package-scoped members and classes
still perform quite poorly with only 13 classes being confined
out of 410. Why does this happen? There can be two ex-
planations: either the classes are really confined and our
analysis is simply not powerful enough to discover that this
is the case, or our original assumption that package-scoped
classes are naturally confined is wrong. The first case leads
to the question of how to improve our analysis. The second
case raises the question of whether we can refactor the code
to make them confined. To answer these questions, we start
with a discussion of confinement violations.

6.3 Confinement Violations

Confinement breaches are caused by a small number of widely
used programming idioms. For any violation Kacheck/J re-
turns a textual representation of the implication chain that
caused the violation. We give examples of the main causes
for classes not being confined.



6.3.1 Anonymity Violations

The top three anonymity violations (accounting for 133 non-
confined classes) in the entire JDK come from methods in
the AWT library which register the current object for noti-
fication. The method addImpl is representative:

protected void addImpl(Component comp,
Object constraints,
int index) {
synchronized (getTreeLock()) {
ContainerEvent e
= new ContainerEvent

(this,
ContainerEvent .COMPONENT_ADDED,
comp) ; ... } }

6.3.2 Widening to superclass

Widening to a superclass is among the most frequent kind
of confinement breach. For instance, Kacheck/J signals the
following widening in the Aglet benchmark:

com/ibm/aglets/tahiti/SecurityPermissionEditor:
- illegal widening to:
- com/ibm/aglets/tahiti/PermissionEditor

PermissionEditor is an abstract superclass of the non-public
SecurityPermissionEditor. PermissionEditor is the part
of the interface that is exported outside the package.

6.3.3 Widening in Containers

A large number of violations comes from the use of container
classes in Java. Data structures such as vectors and hashta-
bles always take arguments of type Object, thus any use of
a container will entail widening to the most generic super
type. For instance, Kacheck/J reports that NativeLibrary,
an inner class of ClassLoader, is not confined.

java/lang/ClassLoader$NativeLibrary:
Illegal Widening to java/lang/Object

The error occurs because an instance of NativeLibrary is
stored in a vector:

systemNativeLibraries.addElement (1ib) ;

As such, this violation may indicate a security problem. The
internals of class loaders should really be encapsulated. In-
spection of the code reveals that the Vector in which the
object is stored is private.

private static Vector systemNativeLibraries
= new Vector();

After a little more checking it is obvious that the vector
does not escape from its defining class. But this requires
inspection of the source code and only remains true only
until the next patch is applied to the class. This example
shows the usefulness of tools such as Kacheck/J as they can
direct the attention of software engineers towards potential
security breaches or software defects.

6.3.4 Anonymous Inner Classes

This violation occurs frequently when inner classes are used
to implement call-backs. For example in Aglets the Mouse-
Listener class is public. Thus, the following code violates
confinement of the anonymous inner class.

MouseListener mlistener = new MouseAdapter() {
public void mouseEntered(MouseEvent e)

{...} K

Similar situations occur with package-scoped classes that
implement public interfaces. They are package-scoped to
protect their members, but are exported outside of the pack-
age.

6.4 Confinement with Generics

In Java, vectors, hashtables and other containers are om-
nipresent. Every time an object is stored in a container, its
type is widened to Object leading to a widening violation
for the object’s class. If Java supported proper parametric
polymorphism, the large majority of the violations would
disappear (there can be a few heterogenous data structures,
but they seem be the exception).

In order to try to assess the impact of generics, without
rewriting all of the programs in the PBS, we modified Kach-
eck/J to ignore widening violations linked to containers.
This is done by ignoring all widenings to Object that oc-
cur in calls to methods of classes java.util. Figure 13
gives the percentages of confined classes without generic vi-
olations; we call these classes Generic-Confined (GC). The
light gray bars show the original number of confined classes.
The dark grey bars show the effect of adding genericity. The
number of confined types increases by 875 (over all programs
in the PBS).
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Figure 13: Generic-confined types.

These results should be viewed with caution because they
can represent an overestimate of the potential gains since we
do not guarantee that the container instances are package-
scoped.

6.5 Inferring Access Modifiers

The low number of confined classes in some of the bench-
marks is surprising. Looking at the access modifiers of
classes in these benchmarks, the reason is immediately clear.
For example, in Kawa, out of 443 classes, only 5 are package-
scoped. Similarly, many benchmarks contain methods and



or fields that are declared as public and thus prevent cer-
tain types from being confined. Are these access modes the
tightest possible, or are they sometimes randomly chosen?
To answer this question we infer the tightest access modes
during analysis and then use the inferred modes for confine-
ment checking. Figure 14 shows the result of this analysis.
Classes that become confined with modifier inference are
called Confinable (CA). With mode inference, the number
of confinable classes jumps to 13,064 for the entire PBS. Fur-
thermore if we combine confinable and generics, we obtain
14,591 Generic-Confinable classes.
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Figure 14: Confinable types.

Figure 15 relates the results of this new analysis to the orig-
inal number of package-scoped classes. It is quite telling to
see that Jax and Kawa, which were applications with the
lowest number of confined classes suddenly have about 40%
of their classes confinable.
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Figure 15: Confinable types and package-scoping.

Of course, using this option on library code may yield an
overestimate of the potential gains as some classes that are
never used from within the library can be made package-
scoped, even though client code requires access to these
classes. Nevertheless, the results give a good indication of
the potential gains.

6.6 Hierarchical Packages

Our last experiment involves changing the semantics of the
Java package mechanism. Currently, Java has a flat pack-
age namespace; that is to say, even though package names
can be nested, there is no semantics in this nesting. This
creates a dilemma between data abstraction and modularity.
Good design practice suggests that applications be split into

packages according to functional characteristics of the code.
On the other hand, creating packages forces certain classes
to become public even if those classes should not be used
by clients of the program. From a confinement perspective,
we could say more packages result in fewer confined classes.
One extreme is Jalapeno, which is structured as a single
package. This diminishes the usefulness of the confinement

property.

To evaluate the impact of the package structure on confine-
ment, we modified Kacheck/J to use a hierarchical package
model. The general idea is that package-access would be
extended to neighbor packages. We introduce a definition of
scope that we call n-package-scoped. n-package-scoped lim-
its access to classes in packages that are less than n nodes in
the tree of package names away from the defining package.
For example, the class java.util.HashtableEntry would
be visible for java.lang.System for n = 2. The unnamed
package is defined to have distance oo from all other pack-
ages, making a n-package-scoped class a.A invisible for b.B
regardless of the choice of n.

Figure 16 shows the cumulative improvements yielded by
increasing the proximity threshold n. With n = 9 most
programs are treated as a single package and the benefits
are 3,691 additional confined classes. The largest increase
in confined classes comes from the Voyager benchmark with
813 new confined classes. The most important increment is
at n = 3 with 2,679 additional confined classes. This thresh-
old value allows classes to access package-scoped members
(and classes) of sibling classes.
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Figure 16: Hierarchical packages.

6.7 Coding for Confinement

Our results clearly point to containers as one source of con-
finement violations. We considered using generic extensions
of Java (such as GJ) to increase confinement. Unfortunately,
the homogeneous translation strategies adopted by most of
these extensions imply that at the bytecode level, code writ-
ten with GJ is translated back to code that uses the stan-
dard Java container classes. Thus, it is not possible for
Kacheck/J to verify that classes stored in generic containers
remain confined. Heterogeneous translation strategies have
the drawback of causing code duplication. Fortunately, it
is possible to achieve the desired result with some coding
techniques. The basic idea is to use the adapter pattern to
wrap an unconfined object around each confined object that
must be stored in a container.



A confined implementation of a hashtable could provide an
interface Entry with two methods boolean equal (Entry e)
and int hashCode(). In the package that contains the con-
fined class C, the programmer would define an implementa-
tion RealEntry of Entry with a package-scoped constructor
that takes the key and value (where for example the value
has the type of the confined class) and package-scoped ac-
cessor methods. The Hashtable itself would only be able to
access the public methods defined in Entry.

The cost of this change would be the creation of the extra
Entry object that might not be required by other imple-
mentations of Hashtable. On the other hand, to access a
key-value pair, this implementation only requires one cast
(Entry to the RealEntry to access key and value), where
the default implementation requires a cast on key and value.
For other containers, the tradeoffs may be worse.

public interface Entry {
public boolean equal(Entry e);
public int hashCode(); }
public class Hashtable {
public void put(Entry e) {...}
public Entry get(Entry e) {...} 1}
class MyEntry implements Entry {
ConfinedKey key;
ConfinedValue val;
public boolean equal(Entry e) {...}
public int hashCode() {...} 1}

Figure 17: Example Hashtable interface.

6.8 Runtime Performance

All benchmarks were performed on a Pentium IIT 800 with
256 MB of RAM running Linux 2.2.19 with IBM JDK 1.3.
Except for the JDK tests (j1, j2, j3, j4) all running times in-
clude loading and analyzing required parts of the Sun JDK
1.3.1 libraries. The longest running time is that of JDK
1.3.1 which consists of 7,037 classes and is analyzed in 41
seconds. On average, Kacheck/J needs 7.5 ms per class. Fig-
ure 18 summarizes the cost of confinement checking, detailed
timings are in the appendix.
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Figure 18: Running times in ms (logl0 scale).

7. RELATED WORK

Reference semantics permeate object-oriented programming
languages, and the issue of controlling aliasing has been the

public class Parent {
protected Parent nonAnonymousMethod() {
return this; // violation of Al
} o}
class NotConf extends Parent {
Parent violation() {
return nonAnonymousMethod() ;
// hidden widening
} o}

Figure 19: Confinement violation C1.

focus of numerous papers in the recent years [12, 11, 8, 1,
15, 10, 13, 7]. We will discuss briefly the most relevant work.

Bokowski and Vitek [5] introduced the notion of confined
types. In their paper, confined types are explicitly declared.
The implication is that software must be designed and imple-
mented with confinement in mind. Their paper discussed an
implementation of a source-level confinement checker based
on Bokowski’s CoffeeStrainer [4]. Kacheck/J infers confine-
ment from existing Java code. The main difference between
that work and the present paper lies in the definition of
anonymity. The most interesting confinement breach is hid-
den widening of confined types to public types that can oc-
cur with inherited methods (rule C1).

Consider the example of Figure 19. Intra-procedural anal-
ysis would not reveal that (new NotConf()).violation()
will widen NotConfined to Parent. So, Bokowski and Vitek
chose to rely on explicit anonymity declarations and added
an additional anonymity constraint:

Ad Anonymity declarations must be preserved when
overriding methods.

Thus, once a method is declared anonymous, all overriding
definitions of that method have to abide by the constraints.
When inferring anonymity, the rule A4 is not necessary. The
goal of A4 was to ensure that anonymity of a method is
independent from the result of method lookup. If anonymity
of methods is inferred, dynamic binding can be taken into
account.

public class A { // A is not confined
Object m() {
// m() is anonymous in relation to C
// but not in relation to B
return null; }
public Object n() {
return new CQO.m(); } }
class B extends A { // B is not confined
Object m() { // m() is not anonymous
return this; } }
class C extends A{} // C is confined

Figure 20: Anonymity need not be preserved in all
subtypes.



Figure 20 shows a confined class C that extends a class A.
The method A.m() meets all anonymity criteria except for
rule A4. The violation of that rule occurs in class B, be-
cause B extends A and redefines m() with an implementation
that returns this. The key point to notice here is that the
anonymity violation cannot occur if the dynamic type of
this is A. We say the method A.m() is anonymous in rela-
tion to C, but not in relation to B.

Another difference between the old and the new anonymity
rules is that we allow widening of the this reference to other
confined types. The old rules forbid returning this or using
this as an argument completely. The new rules allow such
cases, if the type of the return value or the argument is again
a confined type. An example is shown in figure 21, which is
a minimal variation of figure 19. In this case the new rules
would allow both classes to be confined.

class Parent {
protected Parent anonymousMethod() {
return this; // not a violation of Al
} 3}
class Confined extends Parent {
Parent noViolation() {
return anonymousMethod() ;
// widening, but no escape

} o}

Figure 21: Confinement!

In [15], flexible alias protection is presented as a means to
control potential aliasing amongst components of an aggre-
gate object (or owner). Aliasing-mode declarations specify
constraints on the sharing of references. The mode rep pro-
tects representation objects from exposure. In essence, rep
objects belong to a single owner object and the model guar-
antees that all paths that lead to a representation object go
through that object’s owner. The mode arg marks argu-
ment objects which do not belong to the current owner, and
therefore may be aliased from the outside. Argument ob-
jects can have different roles, and the model guarantees that
an owner cannot introduce aliasing between roles. Clarke,
Potter, and Noble [7] have formalized representation con-
tainment by means of ownership types.

Hogg’s Islands [11] and Almeida’s Balloons [1] have similar
aims. An Island or Balloon is an owner object that pro-
tects its internal representation from aliasing. The main
difference from [15] is that both proposals strive for full en-
capsulation, that is, all objects reachable from an owner are
protected from aliasing. This is equivalent to declaring ev-
erything inside an Island or Balloon as rep. This is restric-
tive, since it prevents many common programming styles;
it is not possible to mix protected and unprotected objects
as done with flexible alias protection and confined types.
Hogg’s proposal extends Smalltalk-80 with sharing anno-
tations but it has neither been implemented nor formally
validated. Almeida did present an abstract interpretation
algorithm to decide if a class meets his balloon invariants,
but it was also not implemented so far. Balloon types are
similar to confined types in that they only require an anal-
ysis of the code of the balloon type and not of the whole
program.

Boyland, Noble and Retert [6] introduced capabilities as
a uniform system to describe restrictions imposed on ref-
erences. Their system can model many of the different
modifiers used to address the aliasing problem, such as im-
mutable, unique, readonly or borrowed. They also model a
notion of anonymous references, which is different from the
one used in this paper. Their system of access rights cannot
be used to model confined types, mainly because it lacks
support for modeling package-scoped access.

Kent and Maung [13] proposed an informal extension of
the Eiffel programming language with ownership annota-
tions that are tracked and monitored at run-time. In the
field of static program analysis, a number of techniques have
been developed. Static escape analyses such as the ones pro-
posed by Blanchet [2] and others [3, 9] provide much more
precise results than our technique, but come at a higher
analysis cost. They often require whole program analyses,
and are sensitive to small changes in the source code. More
than anything, their results can be hard to interpret for a
programmer; knowing that an object escapes may not be
enough to have an idea how to re-engineer the code to avoid
such an occurrence.

8. CONCLUSION

‘We have presented the Kacheck/J tool for inferring confine-
ment in Java programs and used the tool to analyze over
46,000 classes. The results of the analysis are surprisingly
high, about 25% of all package-scoped classes and interfaces
are confined. Furthermore, we discovered that many of the
confinement violations are caused by the use of container
classes and thus might be solved by extending Java with
genericity, this would increase confinement to 30%. The
biggest surprise was the number of violations due to badly
chosen access modifiers. After inferring tighter access mod-
ifiers, 456% of all package-scoped classes were confined. We
expect that these numbers will rise even further once pro-
grammers start to write code with confinement in mind..

Confinement is an important property. It bounds aliasing of
encapsulated objects to the defining package of their class,
and helps in re-engineering object-oriented software by ex-
posing potential software defects, or at least making, often
subtle, dependencies visible. We have demonstrated that
inferring confined types is fast and scalable. Kacheck/J is
available from

http://gecko.cs.purdue.edu/kacheck/
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APPENDIX
A. CONSTRAINT GENERATION

In this section we present which opcodes generate which
constraints for confined types.

InvokeStatic
e If this occurs in the argument list, record widening
of this to the type T of the matching argument in
the current method m. This generates the constraint:
C = A where C is not-conf(T") and A is not-anon(m).

e For each argument a of inferred type T that is an ob-
ject, record the corresponding declared type 7" of the
parameter. This generates constraints C' => C where
C' is not-conf(T”) and C is not-conf(T').

Areturn, Putfield, Putstatic, Aastore
e If the variable that is returned or stored is this, record
widening of this to the declared type T” (the return
type, type of the field or the type of the array). This
generates a constraint A = C where C is not-conf(T")
and A is not-anon(m) with m being the current method.

e If the variable that is used is an object but not this
and has inferred type T, record widening to the corre-
sponding declared type T’. This generates constraints
C = C' where C is not-conf(T") and C is not-conf(T').

Invokelnterface, InvokeVirtual, InvokeSpecial
e If this occurs in the argument list, record widening
of this to the type T of the matching argument in

the current method m. This generates the constraint:

C = A where C is not-conf(T") and A is not-anon(m).

e If the call is of the form this.n(), calling a method n
from method m on this, record method invocation dis-
tinguishing between invokevirtual, invokeinterface and
invokespecial. This generates the constraint A = A’
where A is not-anon(n) and A’ is not-anon(m).

e If the call is not on this but of the form a.n(), record
an invocation on type 7" where T is the inferred type
of a. This generates the constraint A = C where A is
not-anon(n) and C is not-conf(T).

e For each argument a of inferred type T' that is an ob-
ject, record the corresponding declared type T” of the
parameter. This generates constraints C = C’ where
C is not-conf(T") and C is not-conf(T).

Athrow
e If the variable that is thrown is this, record widening of
this to Throwable. This generates a constraint C = A
where C is not-conf(Throwable) and A is not-anon(m)
with m being the current method. Because the con-
dition not-conf(Throwable) is always true, a primitive
constraint A can be used, too.

e If the thrown variable is an object but not this and has
inferred type T, record widening to Throwable. This
generates a constraint C = C’ where C is again always
true (not-conf(Throwable)) and C’ is not-conf(T).

Call Propagation
A call to method m on a type T must generate additional
constraints for all subtypes S; of T that are widened to T'.



B. BENCHMARK DATA

Classes Confinement Time
Benchmark All | Public | Tnner | T¥8 | OPdes | o Go | cA | GCA |  (ms)
Aglets 410 193 133 18 107846 13 15 60 66 4979
AlgebraDB 161 130 9 6 51218 20 24 81 97 3009
Bloat 282 150 127 17 84212 10 17 29 39 3623
Denim 949 684 271 63 288140 65 71 187 211 9463
Forte 6535 3053 | 3769 | 192 | 1123362 | 306 | 437 | 1149 | 1346 | 37565
GFC 153 143 8 15 58003 5 5 58 58 3284
GJ 338 202 189 12 105323 27 27 51 52 4245
HyperJ 1007 862 70 26 211269 32 38 193 212 6711
JAX 255 255 0 9 97932 0 0 99 104 3790
JDK 1.1.8 1704 1423 29 80 017132 71 96 712 744 | 13103
JDK 1.2.2 4338 2655 1365 130 958619 527 603 1062 1173 23463
JDK 1.3.0 5438 3326 1780 176 1180406 581 685 1297 1476 29336
JDK 1.3.1 7037 4569 2043 213 2010305 756 891 2126 2344 41304
JPython 214 134 35 7 103094 40 45 90 107 4107
JTB 158 150 1 6 48900 4 4 8 8 3009
JTOpen 3022 1439 557 52 1048704 438 467 1049 1113 23950
Jalapeno 1.1 994 730 132 29 255436 155 159 543 549 6770
JavaSeal 75 56 19 9 34933 1 2 14 17 2685
Kawa 443 438 100 6 68733 1 1 177 177 3910
OVM 763 391 539 26 89975 313 313 427 428 6072
Ozone 2442 1705 490 | 112 447984 93 | 221 754 920 | 13245
Rhino 95 67 1 5 51752 11 15 28 33 3201
SableCC 342 290 47 8 45621 3 5 24 28 3470
Satin 938 559 455 48 194985 48 52 206 218 7955
Schroeder 108 103 7 2 41422 0 1 6 7 3270
Soot 721 302 79 6 65137 45 47 90 92 5622
Symjpack 194 125 0 11 73465 8 10 53 89 3559
Toba 762 327 79 11 98993 53 55 102 104 6020
Tomcat 1271 916 221 93 286368 65 109 377 448 8918
Voyager 5667 4430 1305 294 996077 208 295 1268 1442 34082
Web Server 1024 787 52 60 370664 51 72 255 301 9308
Xerces 622 508 125 35 233919 22 47 221 279 6038
Zeus 604 517 74 39 180437 20 38 237 278 5640
Total [ 46165 | 30277 | 13565 | 1771 | 10917301 | 3998 | 4873 | 13064 | 14591 | 347567

Figure 22: Statistics for the benchmarks. C is Confined, GC is Generic-Confined, CA is Confinable and GCA
is Genrice-Confinable.



