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Abstract

X10 is a modern object-oriented language designed for pro-
ductivity and performance in concurrent and distributed sys-
tems. In this setting, dependent types offer significant oppor-
tunities for detecting design errors statically, documenting
design decisions, eliminating costly run-time checks (e.g.,
for array bounds, null values), and improving the quality of
generated code.

We present the design and implementation of constrained
types, a natural, simple, clean, and expressive extension to
object-oriented programming: A type C{c} names a class or
interface C and a constraint ¢ on the immutable state of C
and in-scope final variables. Constraints may also be asso-
ciated with class definitions (representing class invariants)
and with method and constructor definitions (representing
preconditions). Dynamic casting is permitted. The system
is parametric on the underlying constraint system: the com-
piler supports a simple equality-based constraint system but,
in addition, supports extension with new constraint systems
using compiler plugins.

Categories and Subject Descriptors D.3.2 [Language
Classifications]: Object-oriented languages; D.3.3 [Lan-
guage Constructs and Features]: Classes and objects, Con-
straints
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1. Introduction

X10 is a modern statically typed object-oriented language
designed for high productivity in the high performance com-
puting (HPC) domain [58]. Built essentially on sequential
imperative object-oriented core similar to Scala or Java™,
X10 introduces constructs for distribution and fine-grained
concurrency (asynchrony, atomicity, ordering).

The design of X10 requires a rich type system to permit a
large variety of errors to be ruled out at compile time and to
generate efficient code. Like most object-oriented languages,
X10 supports classes; however, it places equal emphasis on
arrays, a central data structure in high performance com-
puting. In particular, X10 supports dense, distributed multi-
dimensional arrays of value and reference types, built over
index sets known as regions.

A key goal of X10 is to rule out large classes of error by
design. For instance, the possibility of indexing a 2-d array
with 3-d points should simply be ruled out at compile-time.
This means that one must permit the programmer to express
types such as Region(2), the type of all two-dimensional
regions, and Array[int] (r), the type of all int arrays de-
fined over a given region r. For concurrent computations,
one needs the ability to statically check that a method is
being invoked by an activity that is registered with a given
clock (i.e., dynamic barrier) [58]. For distributed computa-
tions, the compiler needs to be aware of the location of ob-
jects: for instance, Tree{loc==here} is the type of all Tree
objects located on the current node.

For performance, it is necessary that array accesses are
bounds-checked statically. Further, certain regions (e.g.,
rectangular regions) may be represented particularly effi-
ciently. Arrays defined over sparse regions may be imple-
mented with less memory overhead. Hence, if a variable is
to range only over rectangular regions, it is important that
this information is conveyed through the type system to the
code generator.

In this paper we describe X10’s support for constrained
types, a form of dependent type [37, 64, 49, 5, 6, 3, 16]—
types parametrized by values—defined on predicates over



the immutable state of objects. Constrained types statically
capture many common invariants that naturally arise in code.
For instance, typically the shape of an array (the number of
dimensions (the rank) and the size of each dimension) is
determined at run time, but is fixed once the array is con-
structed. Thus, the shape of an array is part of its immutable
state. Both mutable and immutable variables may have a
constrained type: the constraint specifies an invariant on the
immutable state of the object referenced by the variable.
X10 provides a framework for specifying and checking
constrained types that achieves certain desirable properties:

¢ Ease of use. The syntax of constrained types is a simple
and natural extension of nominal class types.

¢ Flexibility. The framework permits the development of
concrete, specific type systems tailored to the application
area at hand. X10’s compiler permits extension with dif-
ferent constraint systems via compiler plugins, enabling
a kind of pluggable type system [9]. The framework is
parametric in the kinds of expressions used in the type
system, permitting the installed constraint system to in-
terpret the constraints.

Modularity. The rules for type-checking are specified
once in a way that is independent of the particular vocab-
ulary of operations used in the dependent type system.
The type system supports separate compilation.

Static checking. The framework permits mostly static
type-checking. The user is able to escape the confines of
static type-checking using dynamic casts.

1.1 Constrained types

X10’s sequential syntax is similar to Scala’s [47]. We permit
the definition of a class C to specify a list of typed param-
eters or properties, £1 : T,..., £} : T, similar in syntactic
structure to a method formal parameter list. Each property
in this list is treated as a public final instance field. We also
permit the specification of a class invariant in the class def-
inition, a boolean expression on the properties of the class.
The compiler ensures that all instances of the class created at
run time satisfy the invariant. For instance, we may specify
aclass List with an int length property as follows:

class List(length: int){length >= 0} {...}

The class invariant states that the length of the list is greater
than zero.

Given such a definition for a class C, types can be
constructed by constraining the properties of C with a
boolean expression. In principle, any boolean expression
over the properties specifies a type: the type of all in-
stances of the class satisfying the boolean expression. Thus,
List{length == 3}, List{length <= 42} and even
List{length * £() >= 0} (where £ is function on the
immutable state of the List object) are permissible types.

class List(n: int{self >= 0}) {
var head: Object = null;
var tail: List(n-1) = null;

def thisChead: Object, tail: List): List(tail.n+1) {
property(tail.n+1);
this.head = head;
10 this.tail = tail;
11 }

1
2
3
4
5 def this(): List(0) { property(0); }
6
7
8
9

13 def append(arg: List): List(n+arg.n) {
14 return n==0

15 ? arg : new List(head, tail.append(arg));

16 }

17

18 def reverse(): List(n) = rev(new List());

19 def rev(acc: List): List(n+acc.n) {

20 return n==0

21 ? acc : tail.rev(new List(Chead, acc));

2 }

23

24 def filter(f: Predicate): List{self.n <= this.n} {
25 if (n==0) return this;

26 val 1: List{self.n <= this.n-1} = tail.filter(f);
27 return (f.isTrue(head)) ? new List(head,l) : 1;
28 }

29 }

Figure 1. This program implements a mutable list of Ob-
jects. The size of a list does not change through its lifetime,
even though at different points in time its head and tail might
point to different structures.

In practice, the constraint expression is restricted by the par-
ticular constraint system in use.

Our basic approach to introducing constrained types into
X10 is to follow the spirit of generic types, but to use val-
ues instead of types. In general, a constrained type is of the
form C{e}, the name of a class or interface! C, called the
base class, followed by a condition e. The condition may
refer to the properties of the base class and also to any fi-
nal variables in scope where the type appears. Such a type
represents a refinement of C: the set of all instances of C
whose immutable state satisfies the condition e. We write
C for the vacuously constrained type C{true}, and write
C(ey,...,e) for the type C{fi==ey,...,fy==€;} where C
declares the k properties fy,..., f;. Also, for brevity, a con-
straint may be written as a comma-separated list of con-
juncts, e.g., Point {x>0,y<=0}.

Constrained types may occur wherever normal types oc-
cur. In particular, they may be used to specify the types of
properties, (possibly mutable) local variables or fields, argu-
ments to methods, return types of methods; they may also be
used in casts, etc.

In X10, primitive types such as int and double are object types; thus, for
example, int{self==0} is a legal constrained type.



Using the definitions above, List (n), shown in Figure 1,
is the type of all lists of length n. Intuitively, this definition
states that a List has an int property n, which must be non-
negative. The properties of the class are set through the in-
vocation of property(...) (analogously to super(...))
in the constructors of the class.

In a constraint, the name self is bound and refers to the
type being constrained. The name this, by contrast, is a free
variable in the constraint and refers to the receiver parameter
of the current method or constructor. Use of this is not
permitted in static methods.

The List class has two fields (lines 2-3) that hold the
head and tail of the list. The fields are declared with the
var keyword, indicating that they are not final. Variables
declared with the val keyword, or without a keyword (e.g.,
length: int) are final.

Constructors have “return types” that can specify an in-
variant satisfied by the object being constructed. The com-
piler verifies that the constructor return type and the class
invariant are implied by the property statement and any
super calls in the constructor body. A constructor must
either invoke another constructor of the same class via a
this call or must have a property statement on every non-
exceptional path to ensure the properties are initialized. The
List class has two constructors: the first constructor returns
an empty list; the second returns a list of length m+1, where
m is the length of the second argument.

In the second constructor (lines 7-11), as well as the
append (line 13) and rev (line 20) methods, the return
type depends on properties of the formal parameters. If an
argument appears in a return type then the parameter must
be final, ensuring the argument points to the same object
throughout the evaluation of the method or constructor body.
A parameter may also depend on another parameter in the
argument list.

The use of constraints makes existential types very nat-
ural. Consider the return type of filter (line 24): it spec-
ifies that the list returned is of some unknown length. The
only thing known about it is that its size is bounded by n.
Thus, constrained types naturally subsume existential depen-
dent types. Indeed, every base type C is an “existential” con-
strained type since it does not specify any constraint on its
properties. Thus, code written with constrained types can in-
teract seamlessly with legacy library code, using just base
types wherever appropriate.

The return type of filter also illustrates the difference
between self and this. Here, self refers to the List
being returned by the method; this refers to a different
List: the method’s receiver.

1.2 Constraint system plugins

The X10 compiler allows programmers to extend the seman-
tics of the language with compiler plugins. Plugins may be
used to support different constraint systems [57] to be used

in constrained types. Constraint systems provide code for
checking consistency and entailment.

The condition of a constrained type is parsed and type-
checked as a normal boolean expression over properties and
the final variables in scope at the type. Installed constraint
systems translate the expression into an internal form, reject-
ing expressions that cannot be represented. A given condi-
tion may be a conjunction of constraints from multiple con-
straint systems. A Nelson—Oppen procedure [42] is used to
check consistency of the constraints.

The X10 compiler implements a simple equality-based
constraint system. Constraint solver plugins have been im-
plemented for inequality constraints, for Presburger con-
straints using the CVC3 theorem prover [8], and for set-
based constraints also using CVC3. These constraint sys-
tems are described in Section 3 and the implementation is
discussed in Section 4.

1.3 Claims

The paper presents constrained types in the X10 program-
ming language. We claim that the design is natural, easy to
use, and useful. Many example programs have been written
using constrained types and are available at x10.sf.net/
applications/examples.

As in staged languages [43, 61], the design distinguishes
between compile-time and run-time evaluation. Constrained
types are checked (mostly) at compile-time. The compiler
uses a constraint solver to perform universal reasoning (e.g.,
“for all possible values of method parameters”) for depen-
dent type-checking. There is no run-time constraint-solving.
However, run-time casts and instanceof checks involving
dependent types are permitted; these tests involve arithmetic,
not algebra—the values of all parameters are known.

The design supports separate compilation: a class needs
to be recompiled only when it is modified or when the
method and field signatures or invariants of classes on which
it depends are modified.

We claim that the design is flexible. The language de-
sign is parametric on the constraint system being used. The
compiler supports integration of different constraint solvers
into the language. Dependent clauses also form the basis of
a general user-definable annotation framework we have im-
plemented separately [46].

We claim the design is clean and modular. We present
a simple core language CFJ, extending FJ [29] with con-
strained types on top of an arbitrary constraint system. We
present rules for type-checking CFJ programs that are para-
metric in the constraint system and establish subject reduc-
tion and progress theorems.

Rest of this paper. Section 2 describes the syntax and se-
mantics of constrained types. Section 3 works through a
number of examples using a variety of constraint systems.
The compiler implementation, including support for con-
straint system plugins, is described Section 4. A formal se-



mantics for a core language with constrained types is pre-
sented in Section 5, and a soundness proof is presented in
the appendix. Section 6 reviews related work. The paper con-
cludes in Section 7 with a discussion of future work.

2. Constrained types

This section describes constrained types in X10.

2.1 Properties

A property is a public final instance field of a class that
cannot be overridden by subclassing. Like any other field,
a property is typed, and its type need not necessarily be
primitive. Properties thus capture the immutable public state
of an object, initialized when the object is created, that can
be classified by constrained types. Syntactically, properties
are specified in a parameter list right after the name of
the class in a class definition. The class body may contain
specifications of other fields; these fields may be mutable.

Properties may be of arbitrary type. For instance, the class
Region in Figure 2 has an int property called rank. In
turn, the class Dist has a Region property, called region,
and also an int property rank. The invariant for Dist
ensures that rank == region.rank. Similarly, an Array
has properties dist, region, and rank and appropriate
constraints ensuring that the statically available information
about them is consistent.” In this way, rich constraints on the
immutable portion of the object reference graph, rooted at
the current object and utilizing objects at user-defined types,
may be specified.

2.2 Constraints

A constrained type is of the form C{e}, consisting of a
base class C and a condition e, a boolean expression on the
properties of the base class and the final variables in scope at
the type. Constraints specify (possibly) partial information
about the variables of interest. The type C{e} represents the
set of all instances of C whose immutable state satisfies the
condition e.

Constraints may use the special variable self to stand for
the object whose type is being defined. Thus, int{self>=0}
is the set of natural numbers, and Point {x*x+y*y <= 1.0}
represents the interior of a circle (for a class Point with two
float properties x and y). When there is no ambiguity, a
property reference self.x may be abbreviated to x. The
type int{self==v} represents a “singleton” type, an int
is of this type only if it has the same value as v.

To be clear, self is not the same as this. In the code
fragment in Figure 2, the method contains (line 2) has a
parameter p with type Point{self.rank==this.rank}.
In the condition, self refers to the Point p; this refers

2 All constraint languages used in constrained types permit object refer-
ences, field selection and equality. Such constraint systems have been stud-
ied extensively under the name of “feature structures” [2].

class Region(rank: int) {

1

2 def contains(p: Point{self.rank==this.rank}):

3 boolean { ... }

4

5}

6

7 class Dist(region: Region, rank: int)

8 {rank == region.rank} { ... }

9

10 class Array[T](dist: Dist, region: Region, rank: int)
11 {region == dist.region, rank == dist.rank}

2 {

13 def get(p: Point{region.contains(self)}: T { ... }
14 -

15}

Figure 2. Fragment of X10 support for regions, distribu-
tions, and arrays

to the method receiver, an instance of the enclosing class
Region.

Constraints are specified in terms of an underlying con-
straint system [57]—a pre-defined logical vocabulary of
functions and predicates with algorithms for consistency
and entailment. The X10 compiler permits different con-
straint systems to be installed using compiler plugins [9].
Constraint system plugins define a language of constraints
by symbolically interpreting the boolean expression speci-
fying a type’s condition; plugins may report an error if the
condition cannot be interpreted.

In principle, types may be constrained by any boolean
expression over the properties. For practical reasons, restric-
tions need to be imposed to ensure constraint checking is
decidable.

The condition of a constrained type must be a pure func-
tion only of the properties of the base class. Because proper-
ties are final instance fields of the object, this requirement
ensures that whether or not an object belongs to a con-
strained type does not depend on the mutable state of the
object. That is, the status of the predicate “this object be-
longs to this type” does not change over the lifetime of the
object. Second, by insisting that each property be a field of
the object, the question of whether an object is of a given
type can be determined merely by examining the state of
the object and evaluating a boolean expression. Of course,
an implementation is free to not explicitly allocate memory
in the object for such fields. For instance, it may use some
scheme of tagged pointers to implicitly encode the values of
these fields.

Further, by requiring that the programmer distinguish
certain final fields of a class as properties, we ensure that the
programmer consciously controls which final fields should
be available for constructing constrained types. A field that
is “accidentally” final may not be used in the construction of
a constrained type. It must be declared as a property.



2.3 Subtyping

Constrained types come equipped with a subtype relation
that combines the nominal subtyping relation of classes and
interfaces with the logical entailment relation of the con-
straint system. Namely, a constraint C{c} is a subtype of
D{d} if C is a subtype of D and every value in C that satisfies
c also satisfies d.

This definition implies that C{e;} is a subtype of C{e;}
if e; entails e;. In particular, for all conditions e, C{e} is a
subtype of C. C{e} is empty exactly when e conjoined with
C’s class invariant is inconsistent.

Two constrained types C;{e; } and C,{e,} are considered
equivalent if C; and C; are the same base type and e; and
e, are equivalent when considered as logical expressions.
Thus, for instance, C{x*x==4} and C{x==2 || x==-2} are
equivalent types.

2.4 Final variables

The use of final local variables, formal parameters, and fields
in constrained types has proven to be particularly valuable
in practice. The same variable that is being used in compu-
tation can also be used to specify types. There is no need
to introduce separate, universally and existentially quanti-
fied “index” variables as in, for instance, DML [64]. Dur-
ing type-checking, final variables are turned into symbolic
variables—some fixed but unknown value—of the same
type. Computation is performed in a constraint-based fash-
ion on such variables.

Because of the usefulness of final variables in X10, vari-
ables and parameters declared without an explicit var or val
keyword are considered final.

2.5 Method and constructor preconditions

Methods and constructors may specify constraints on their
(final) parameters, including the implicit parameter this.
For an invocation of a method or constructor to be type-
correct, the associated constraint must be statically known to
be satisfied by the actual receiver and actual arguments of the
invocation. The constraint thus imposes a precondition on
callers of the method. For instance, the following is a valid
method declaration for a recursive binary search method in
a list class with a 1ength property:

def search(value: T, lo: int, hi: int)
{0 <= 1o, lo <= hi, hi < length}: T = ...;

The precondition specifies that the low and high search in-
dices be within the list bounds and that the low index is less
than or equal to the high index.

The precondition, any method parameter, and the method
return type may all contain expressions involving the formal
parameters of the method. Any parameter used in this way
must be final, ensuring it is not mutated by the method body.

2.6 Inheritance

Like Java, X10 support single class inheritance and multiple
interface inheritance.

Java does not allow interfaces to specify instance fields.
Rather, all fields in an interface are final static fields (con-
stants). However, in X10 since properties play a central role
in the specification of refinements of a type, it makes sense
to permit interfaces to specify properties. Similarly, an inter-
face definition may specify an invariant on its properties: all
classes implementing the interface must satisfy the invariant.
Methods in the body of an interface may have constraints on
their parameters as well.

All classes implementing an interface must have a prop-
erty with the same name and type (either declared in the class
or inherited from the superclass) for each property in the in-
terface. If a class implements multiple interfaces and more
than one of them specifies a property with the same name,
then they must all agree on the type of the property. The
class must declare a single property with the given name and
type.

A class may extend a constrained class (or interface). The
general form of a class declaration is thus:

class C(x;: Ci{c1}, ..., xx: Gl {c}
extends D{d}
implements I;{c;},

oy In{cny {00}

For all instances of C, the class invariant c, the invariants of
the superclass and superinterfaces (specified at their defini-
tions), as well as the constraints d and c; must hold. Declar-
ing that C extends D{d} documents the programmer’s intent
that every call to super in a constructor for C must ensure
that the invariant d is established on the state of the class D.

Our current implementation compiles X10 to Java [26],
and erases dependent type information. To simplify the
translation—no name mangling is needed when generating
code—it must be the case that a class does not have two dif-
ferent method definitions that conflict with each other when
the constrained clauses in their types are erased.

A class inherits from its direct superclass and superin-
terfaces all their methods that are visible according to the
access modifiers and that are not hidden or overridden. A
method m; in a class C; overrides a method m; in a superclass
Cy if m; and my have signatures with equivalent unerased for-
mal parameter types. It is a static error if m;’s erased signa-
ture is the same as my’s, but m; does not override my.

It is also a static error if the method precondition on
my does not entail the precondition on m;. This restriction
ensures that if the a call is type-checked against my at the
superclass type Cy, the precondition is satisfied if the method
is dispatched at run time to the method m; in the subclass C;.

2.7 Method dispatch

Method dispatch takes only the class hierarchy into account,
not dependent type information. Thus, X10 does not provide
a form of predicate dispatch [11, 39], evaluating constraints



at run time to determine which method to invoke. This de-
sign decision ensures that serious errors such as method in-
vocation errors are captured at compile time. Such errors can
arise because multiple incomparable methods with the same
name and acceptable argument lists might be available at the
dynamic dependent type of the receiver.

2.8 Constructors for dependent classes

Constructors must ensure that the class invariants of the
given class and its superclasses and superinterfaces hold. For
instance, the nullary constructor for List ensures that the
property length has the value 0:

public def this(): List(0) { property(0); }

The property statement is used to set all the properties of
the new object simultaneously. Capturing this assignment in
a single statement simplifies checking that the constructor
postcondition and class invariant are established. If a class
has properties, every path through the constructor must con-
tain exactly one property statement.

Java-like languages permit constructors to throw excep-
tions. This is necessary to deal with the situation in which
the arguments to a constructor for a class C are such that no
object can be constructed that satisfies the invariants for C.
Dependent types make it possible to perform some of these
checks at compile time. The class invariant of a class explic-
itly captures conditions on the properties of the class that
must be satisfied by any instance of the class. Construc-
tor preconditions capture conditions on the constructor ar-
guments. The compiler’s static check for non-emptiness of
the type of any variable captures these invariant violations at
compile time.

The class invariant is part of the public interface of the
class. Consequently, if the invariant of C is changed, a class
that creates instances of C may need to be recompiled to
ensure the invariant is satisfied by the instances.

2.9 Separation between compile-time and run-time
computation

Our design distinguishes between compile-time execution
(performed during type-checking) and run-time execution.
At compile time, the compiler processes the abstract syn-
tax tree of the program generating queries to the constraint
solver. The only computation engine running is the con-
straint solver, which operates on its own vocabulary of pred-
icates and functions. Program variables (such as local vari-
ables) that occur in types are dealt with symbolically. They
are replaced with logical variables—some fixed, but un-
known value—of the same type. The constraint solver must
know how to process pieces of partial information about
these logical variables in order to determine whether some
constraint is entailed. At run time, the same program vari-
able will have a concrete value and will perform “arith-
metic” (calculations) where the compiler performed “alge-
bra” (symbolic analysis).

Constrained types may occur in a run-time cast e as T.
Code is generated to check at run time that the expression e
satisfies any constraints in T.

2.10 Equality-based constraints

The X10 compiler includes a simple equality-based con-
straint system. All constraint systems installed using plug-
ins must support at least the core equality-based constraints.
Constraints are conjunctions of equalities between constraint
terms: properties, final variables, compile-time constants,
and self:

(C Term) t o
(Constraint) c,d :

x | self | this

| t.£ | n
true | t==t | c&c | x:T;cC

We use the syntax x: T; c for the constraint obtained by
existentially quantifying the variable x of type T in c.

2.11 Existential quantification

Constrained types subsume existential types. For example,
the length of the list returned by filter in Figure 1 is
existentially quantified.

Operations on values of constrained type propagate con-
straints to the operation result by introducing existentially
quantified variables. Consider the assignment to c below:

a: int{self >= 0} e
b: int{self >= 0}
c: int{self >= 0}

a*b;

During type-checking, the type of a*b is computed from the
types of a and b to be the type:

int{x: int, y: int; self==x*y & x>=0 & y>=0}

That is, there exist non-negative ints x and y whose prod-
uct is self. The constraint on this type is strong enough to
establish the constraint required by c. If the computed con-
straint cannot be represented by any installed constraint sys-
tem, the type of a*b is promoted to the unconstrained super-
type int.

2.12 Real clauses

Because object-oriented languages permit arbitrary mutual
recursion between classes: classes A and B may have fields
of type B and A, respectively—the type/property graph may
have cycles. The nodes in this graph are base types (class
and interface names). There is an edge from node A to node
B if A has a property whose base type is B.

Let us define the real clause of a constrained type C{c} to
be the set of constraints that must be satisfied by any instance
of C{c}. This includes not only the condition c but also
constraints that hold for all instances of C, as determined
by C’s class invariant. Let rc(C{c}) denote the real clause
of C{c}. For simplicity, we consider only top-level classes;
thus, the only free variable in rc(C{c}) is self. We draw
out self as a formal parameter and write rc(C{c},z) for
re(C{c[z/self]}).



Consider a general class definition:

class C(x;: Ci{ci}, ..., xp: C{ck}){c}
extends D{d} { ... }

From this, we get:

cAd)|z/self,z/this| A rc(D,z) A
re(Cz) = 5c(C1{>c[1§,z.x1) //\ /]\ rc(C;E{ck%,z.xk)

That is, given a program P with classes Cp,...,C, the
set of real clauses for Cy,...,C; are defined in a mutually
recursive fashion through the Clark completion of a Horn
clause theory (over an underlying constraint system).

The central algorithmic question now becomes whether
given a constrained clause d, does rc¢(C{c}, z) entail d? From
the above formulation the question is clearly semi-decidable.
It is not clear however whether it is decidable. This is a
direction for further work.

The X10 compiler is conservative and rejects programs
with cyclic real clauses: programs where the real clause
of the type of a property p itself constrains p. In practice,
many data structures have non-cyclic real clauses. For these
programs, the real clause can be computed quickly and only
a bounded number of questions to the constraint solver are
generated during type-checking.

2.13 Parametric consistency

Consider the set of final variables that are referenced in a
type T = C{c}. These are the parameters of the type. A type
is said to be parametrically consistent if its (class) invari-
ant c is solvable for each possible assignment of values to
parameters. Types are required to be parametrically consis-
tent. Parametric consistency is sufficient to ensure that the
extension of a type is non-empty.3
Consider a variation of List from Figure 1:

class List(n: int{self >= 0}) {
var head: Object;
var tail: List{self!=null &
self.n==this.n-1};

}

The type of the field tail is not parametrically consistent.
There exists a value for the property this.n, namely 0, for
which the real clause self |=null & self.n==this.n-1
& self.n>= 0 is not satisfiable. Permitting tail to be null
would allow the type to be non-empty.

The compiler will throw a type error when it encounters
the initializer for this field in a constructor since it will not
be able to prove that the initial value is of the given type.

3 Parametric consistency is not necessary in that there may be programs
whose types are parametrically inconsistent but which never encounter
empty types at run time because of relationships in data values that are too
complicated to be captured by the type system.

3. Examples

The following section presents example uses of constrained
types using several different constraint systems.

3.1 Equality constraints

The X10 compiler includes a simple equality-based con-
straint system, described in Section 2. Equalities constraints
are used throughout X10 programs. For example, to ensure
n-dimensional arrays are indexed only be n-dimensional in-
dex points, the array access operation requires that the ar-
ray’s rank property be equal to the index’s rank.

Equality constraints specified in the X10 run-time library
are used by the compiler to generate efficient code. For
instance, an iteration over the points in a region can be
optimized to a set of nested loops if the constraint on the
region’s type specifies that the region is rectangular and of
constant rank.

3.2 Presburger constraints

Presburger constraints are linear integer inequalities. A
Presburger constraint solver plugin was implemented using
CVC3[7, 8]. The list example in Figure 1 type-checks using
this constraint system.

Presburger constraints are particularly useful in a high-
performance computing setting where array operations are
pervasive. Xi and Pfenning proposed using dependent types
for eliminating array bounds checks [63]. A Presburger con-
straint system can be used to keep track of array dimensions
and array indices to ensure bounds violations do not occur.

3.3 Set constraints: region-based arrays

Rather than using Presburger constraints, X10 takes another
approach: following ZPL [10], arrays in X10 are defined
over regions, sets of n-dimensional index points [27]. For
instance, the region [0:200,1:100] specifies a collection
of two-dimensional points (i, j) with i ranging from 0 to
200 and j ranging from 1 to 100.

Regions and points were modeled in CVC3 [8] to create a
constraint solver that ensures array bounds violations do not
occur: an array access type-checks if the index point can be
statically determined to be in the region over which the array
is defined.

Region constraints are subset constraints written as calls
to the contains method of the region class. The constraint
solver does not actually evaluate the calls to the contains
method, rather it interprets these calls symbolically as subset
constraints at compile time.

Constraints have the following syntax:



const NORTH: point{rank==2}
const WEST: point{rank==2}

[1,0];
[0,1]1;

1

2

3

4+ def sor(omega: double,

5 G: Array[double]{rank==2},
6 iter: int): void {

7 outer: Region{self==G.region, rank==2} = G.region;
8 inner: Region{G.region.contains(self),

9 rank==G.region.rank}

10 = outer & (outer-NORTH) & (outer+NORTH)

11 & (outer-WEST) & (outer+WEST);

inner.rank(®); // {i | (i,j) in inner}
inner.rank(1); // {j | (i,j) in inner}

13 d®: Region
14 dl: Region

16 if (dl.size() == 0) return;

17

18 dimin: int = dl.low();

19 dlmax: int = dl.highQ;

20

21 for (var off: int = 1; off <= iter*2; off++)
2 finish foreach ((i): point in dO)

23 if (A% 2 ==off % 2)

24 for (ij: point in inner & [i..i,dIlmin..dlmax])
25 G(ij) = omega / 4.

2 * (G(ij-NORTH) + G(ij+NORTH)
2 + G(ij-WEST) + G(ij+WEST))
28 * (1. - omega) * G(ij);

29 }

Figure 3. Successive over-relaxation with regions

(Constraint) ¢ == r.contains(r) | ...
(Region) r =t | [by:di,... brdg]
| r|lr|r&r |r-r
| r+p|r-p
(Point)y p =t | [by,...,by]
(Integer) bd == t |n

where t are constraint terms (properties and final variables)
and n are integer literals.

Regions used in constraints are either constraint terms t,
region constants, unions (| ), intersections (&), or differences
(-), or regions where each point is offset by another point p
using + or -.

For example, the code in Figure 3 performs a successive
over-relaxation [54] of a matrix G with rank 2. The function
declares a region variable outer as an alias for G’s region
and a region variable inner to be the subset of outer that
excludes the boundary points, formed by intersecting the
outer region with itself shifted up, down, left, and right by
one. The function then declares two more regions d® and
d1, where d; is set of points x; where (Xg,x;) is in inner.
The function iterates multiple times over points i in d@.
The syntax finish foreach (line 22) tells the compiler
to execute each loop iteration in parallel and to wait for all
concurrent activities to terminate. The inner loop (lines 24—
28) iterates over a subregion of inner.

The type checker establishes that the region property of
the point ij (line 24) is inner & [i..1i,d1min. .d1lmax],
and that this region is a subset of inner, which is in turn a
subset of outer, the region of the array G. Thus, the accesses
to the array in the loop body do not violate the bounds of the
array.

A key to making the program type-check is that the region
intersection that defines inner (lines 10-11) is explicitly
intersected with outer so that the constraint solver can
determine that the result is a subset of outer.

4. Implementation

The X10 compiler provides a framework for writing and
checking constrained types. Constraints in the base X10 lan-
guage are conjunctions of equalities over immutable side-
effect-free expressions. Compiler plugins may be installed
to support other constraint languages and solvers.

The X10 compiler is implemented as an extension of Java
using the Polyglot compiler framework [44]. Expressions
used in constrained types are type-checked as normal non-
dependent X10 expressions; no constraint solving is per-
formed on these expressions. During type-checking, con-
straints are generated and solved using the built-in constraint
solver or using solvers provided by plugins. The system
allows types to constrained by conjunctions of constraints
in different constraint languages. If constraints cannot be
solved, an error is reported.

4.1 Constraint checking

After type-checking a constraint as a boolean expression e,
the abstract syntax tree for the boolean expression is trans-
formed into a conjunction of predicates, e; & ... & e;. Each
conjunct e; is given to the installed constraint system plug-
ins, which symbolically evaluate the expression to create an
internal representation of the conjunct. If no constraint sys-
tem can handle the conjunct, an error is reported.

To interoperate, the constraint solvers must share a com-
mon vocabulary: constraint terms t range over the proper-
ties of the base type, the final variables in scope at the type
(including this), the special variable self representing a
value of the type, and field selections t.£f. All constraint
systems are required to support the trivial constraint true,
conjunction, existential quantification, and equality on con-
straint terms.

In this form, the constraint is represented as a con-
junction of constraints from different theories. Constraints
are checked for satisfiability using a Nelson—-Oppen pro-
cedure [42]. After constructing a constraint-system specific
representation of a conjunct, each plugin computes the set of
term equalities entailed by the conjunct. These equalities are
propagated to the other conjuncts, which are again checked
for satisfiability and any new equalities generated are prop-
agated. If a conjunct is found to be unsatisfiable, an error is
reported.



During type-checking, the type checker needs to deter-
mine if the type C{c} is a subtype of D{d}. This is true if the
base type C is a subtype of D and if the constraint c entails
d. To check entailment, each constraint solver is asked if a
given conjunct of d is entailed by c. If any report false, the
entailment does not hold and the subtyping check fails.

4.2 Translation

After constraint-checking, the X10 code is translated to Java
in a straightforward manner. Each dependent class is trans-
lated into a single class of the same name without depen-
dent types. The explicit properties of the dependent class are
translated into public final instance fields of the target
class. A property statement in a constructor is translated to
a sequence of assignments to initialize the property fields.

For each property, a getter method is also generated in the
target Java class. Properties declared in interfaces are trans-
lated into getter method signatures. Subclasses implement-
ing these interfaces thus provide the required properties by
implementing the generated interfaces.

Usually, constrained types are simply translated to non-
constrained types by erasure; constraints are checked stati-
cally and need no run-time representation. However, depen-
dent types may be used in casts and instanceof expres-
sions. The values of the properties of the object whose type
is being tested are sufficient to implement the test. The lan-
guage does not allow existential constraints to be used in
run-time type tests; this allows the tests of constrained types
to be implemented by evaluating the constraint with self
bound to the expression being tested. For example, casts are
translated as:

[e as C{c}] =
new Object() {
C cast(C self) {
if ([c]) return self;
throw new ClassCastException(); }

}.cast((O) [e])

Wrapping the evaluation of ¢ in an anonymous class ensures
the expression e is evaluated only once.

To support separate compilation, abstract syntax trees
for constraints are embedded into the generated Java code,
and from there into the generated class file. The compiler
reconstructs dependent types in referenced class files from
their ASTs.

5. Formal semantics

In this section we formalize a small fragment of X10, CFJ—
an extension of Featherweight Java (FJ) [29] with con-
strained types—to illustrate the basic concepts behind con-
strained type-checking. A proof of soundness is given in the
appendix.

The language is functional in that assignment is not ad-
mitted. However, it is not difficult to introduce the notion

of mutable fields, and assignment to such fields. Since con-
strained types may only refer to immutable state, the valid-
ity of these types is not compromised by the introduction of
state. Further, we do not formalize overloading of methods.
Rather, as with FJ, we simply require that the input program
be such that the class name C and method name m uniquely
select the associated method on the class.

The language is defined over a constraint system ( that
includes equality constraints over final access paths, con-
junction, existential quantification, and a vocabulary of for-
mulas and predicates.

5.1 The Object constraint system

Given a program P, we now show how to build a larger con-
straint system O(C) on top of C which captures constraints
related to the object-oriented structure of P. O includes the
inference rules shown in Figure 4 for structual and subtyping
constraints. In addition, O(C) subsumes C in that if I'F¢ ¢
thenI'Fp c.

The constraint class(C) is intended to be true for all
classes C defined in the program. For a variable x, fields (x)
is intended to specify the (complete) set of typed fields avail-
able to x. x has I is intended to specify that the member I
(field or method) is available to x—for instance it is defined
at the class at which x is declared or inherited by it, or it is
available at the upper bound of a type variable. The judg-
ment I"-p S<: T is intended to hold if S is a subtype of T in
the environment I'.

We assume that the rules given are complete for defin-
ing the predicates C<:D and C has I, for classes C, D and
members I; that is, if the rules cannot be used to establish
Fo C<:D (o C has I), then it is the case that Fp C«:D
(o —(C has I)). Such negative facts are important to es-
tablish inconsistency of assumptions (for instance, for the
programming languages which permits the user to state con-
straints on type variables).

5.2 Judgments

In the following I' is a well-typed context, i.e., a finite,
possibly empty sequence of formulas x : T and constraints
c satisfying:

1. for any formula ¢ in the sequence all variables x occur-
ring in ¢ are defined by a declaration x : T in the sequence
to the left of ¢.

2. for any variable x , there is at most one formula x : T in
I.

The judgments of interest are as follows. (1) Type well-
formedness: I' - T type, (2) Subtyping: I' - S<: T, (3) Typ-
ing: ' e : T, (4) Method OK (method M is well-defined for
the class C): ' M OK in C, (5) Field OK (field £ : T is well-
defined for the class C): ' £ : T OK in C (6) Class OK:
I'+ L OK (class definition L is well-formed).

In defining these judgments we will use I ¢ ¢, the judg-
ment corresponding to the Object constraint system. Recall



Structural constraints:

class C(...) extends D{...} € P

CLASS
Fo class(C) ( )

x:0Object o fields(x) = e (FIELDS-B)

FonewD(t).fi==t; (SEL)

[,x:Dbko fields(x) =g:V
class C(f:U){c} extends D{M} € C

I'tpx:C,class(C)
I'to inv(C,x)

ko fields(x)=£:T
(INV) (FIELD)
I'tpoxhasf;:T;

I,x:Sko fields(x) v

I,x:Cho fields(x) =g:V,f:U[x/this]

I'x:Chkpclass(C) 6= x/this]
defm(zZ:V){c}:T=ecP

Ix:DFpxhasm(z:V){c}:T=e
class C(...) extends D{M} m¢M

=f:
I,x:S{d} Fo fields(x) = £: V{d[x/self]}
£:

I,x:Ckoxhas (m(Z:V0){cO}:TO=e)
(METHOD-B)

Subtyping:

FOT<:T (S—ID) FF()T1<:T2,T2<:T3

(S-TRANS)

Ix:Ckoxhasm(z:V){c}:T=e

class C(...) extends D{...} € P

Ix:(y:U;S) o fields(x) =£: (y:U;V)
(FIELDS-I) (FIELDS-C,E)
Ix:Skoxhasm(z:V){c}:T=e
(METHOD-T) Ix:S{d} Fpxhasm(z:V){c}: T{d[x/self]} =e

Ix:(y:U;S)Foxhasm(z:V){c}: (y:U;T) =e
(METHOD-C,E)

I'+T{c} type

(S-EXTENDS) (S-CONST-L)

F|_0T1<:T3

I'kpS<:T T,self:Stkpc

}_0 C<:D

I'FUtype ThpS<:T (xfresh)

I'toT{c}<:T

I'Ft:U ThoS<: Tt/x]

S-CONST-R
r Fo S<: T{C} ( )

I'tox:U;S<: T

(S-ExisTs-L) (S-EXISTS-R)

I'toS<:x:U;T

For a class C and variable x, inv(C,x) stands for the conjunction of class invariants for C and its supertypes, with this replaced

by x.

Figure 4. The Object constraint system, O

that O subsumes the underlying constraint system (. For
simplicity, we define I' - ¢ to mean 6(T") ¢ c, where the
constraint projection, 6(I') is defined as allows.

o(e) = true

o(x:C,IN) =0(D

o(x:T{c},T) = c[x/self],o(x: T,I)

o(x:(y:$;T),I)=0(y:S,x: T,

o6(c,T)=c,o(l)
Above, in the third rule we assume that alpha-equivalence
is used to choose the variable x from a set of variables that
does not occur in the context I'.

We say that a context I' is consistent if all (finite) sub-
sets of {G(¢) | T'F ¢} are consistent. In all type judgments
presented below (T-CAST, T-FIELD etc) we make the im-
plicit assumption that the context I" is consistent; if it is in-
consistent, the rule cannot be used and the type of the given
expression cannot be established (type-checking fails).

53 CFJ

The syntax and semantics of CFJ is presented in Figure 5.
The syntax is essentially that of FJ with the following major
exceptions. First, types may be constrained with a clause
{c}. Second both classes and methods may have constraint
clauses c—in the case of classes, c is to be thought of as
an invariant satisfied by all instances of the class, and in the
case of methods, c is an additional condition that must be
satisfied by the receiver and the arguments of the method in
order for the method to be invoked.

We assume a constraint system C, with a vocabulary of
predicates q and functions f. Constraints include true, con-
junctions, existentials, predicates, and term equality. Con-

straints are well-formed if they are of the pre-given type o.
The rules PRED and FUN ensure that predicates and formu-
las are well-formed and appeal to the constraint system C.

The set of types includes classes C and is closed un-
der constrained types (T{c}) and existential quantification
(x:S;T). An object o is of type C (for C a class) if it is an
instance of a subtype of C; it is of type T{c} if it is of type T
and it satisfies the constraint c[o/sel1f]*; itis of type x:S; T
if there is some object q of type S such that o is of type
T[q/x] (treating at type as a syntactic expression).

The rules for well-formedness of types are straightfor-
ward, given the assumption that constraints are of type o.

Typing rules. T-VAR is as expected, except that it asserts
the constraint sel f==x which records the fact that any value
of this type is known statically to be equal to x. This con-
straint is actually crucial—as we shall see in the other rules
once we establish that an expression e is of a given type T,
we “transfer” the type to a freshly chosen variable z. If in
fact e has a static “name” x (i.e., e is known statically to be
equal to x; that is, e is of type T{self==x}), then T-VAR
lets us assert that z: T{self==x}, i.e., z equals x. Thus T-
VAR provides an important base case for reasoning statically
about equality of values in the environment.

We do away with the three casts provided in FJ in favor
of a single cast, requiring only that e be of some type U. At
run time e will be checked to see if it is actually of type T
(see Rule R-CAST).

4Thus the constraint c in a type T{c} should be thought of as a unary
predicate Aself.c, an object is of this type if it is of type T and satisfies
this predicate.



CFJ productions:

(Class) L ::
(Method) M ::= defmX:T){c}:T=e;

(Exp.) e ==x | this | e.f | e.m(€) | newC(e) | easT

Constraint well-formedness rules:

I'Ftrue:o (TRUE)

qT):0eC THT:T
I'q(T):o

(PRED)

Type well-formedness rules:

I't class(C)

(CLASS)
' C type

Typing rules:
Ix:TFx:T{self ==x} (T-VAR)

I'e:T,e:T

class C(f: T){c} extends N {¥}

I,z:T,Zz:TFzhasm(z:U){c}:S=¢,T<:U,c (z,Z fresh)

I'-em(@):(z:T;Z:T;S)

this:Clc:0 this:C,X:U,c T type,Utype,e:S,S<:T

defm(x:U){c}:T=e; OKinC

Transition rules:

x:Ck fields(x)=f:T
(new C(e)).f; — &3

e—e

e.f,- — e’.f,-

FC{self ==new C(d)}<:T

new C(d) as T — new C(d)

e—e

easT—e asT

(Type) S,T,U == N | T{c} | x:S;T
(N Type) N == C | N{c}
(C Term) t == x | self | this | t.f | newC(t) | £(t)
(Const.) cd u= true | t==t | ¢,c | xT;c | q(%)
I'bcg:o Tkecr:o I't:T Thclt/x]:0
- (AND) (EXISTS)
I'+(cg,c1):0 I'-x:T;c:o0
f(T):TGC TFT:T (FUN) T'btyg:Tp T'Ht:Ty
T - I'ETo<: Ty VI FT<:T
TFET):T (CF To<: Ty 1<iT0)  Bouars)
I'Fty==t;:0
T'F S type,T type I'FTtype T,self:Tkc:o
SCOUPE TP ExisTs-T) ype = (DEP)
I'-x:S;T type I'+T{c} type
I'Fe:U T'FTtype I'e:S TI,z:Skzhasf:T (zfresh)
e T (T-CAsT) (T-FIELD)
I'teasT:T I'tef:(z:S;T{self ==1z.f})
'te:T Fclass(C)
_ I,z:Ck fields(z) =£:U (z,Z fresh)
(T-INVK) I,z:Cz:T,z.f=2F T<:T,inv(C,z)
— — — - (T-NEW)
I'tnew C(€) : C{Z : T; new C(Z) = self,inv(C,self)}
MOKinC this:Ckc:o0 this:C,cFT type,N type
— — (CLAss OK)
class C(f:T){c} extends N{M} OK
(METHOD OK)
x:Chxhasm(X:T){c}:T=e
(R-FIELD) — — — —— (R-INVK)
(new C(€)).m(d) — e[new C(€),d/this,X]
e—e
(RC-FIELD) — (RC-INVK-RECV)
em(e) — e’ .m(e)
e; — e,-'
(R-CAST) 7 (RC-INVK-ARG)
em(...,e;,...) —em(...,e},...)
RC-C e el (RC-NEW-ARG)
(RC-CAST) new((...,e;...) ~newC(...,e},...)

Figure 5. Semantics of CFJ



T-FIELD may be understood through “proxy” reasoning
as follows. Given the context I" assume the receiver e can be
established to be of type S. Now we do not know the run-
time value of e, so we shall assume that it is some fixed but
unknown “proxy” value z (of type S) that is “fresh” in that
it is not known to be related to any known value (i.e., those
recorded in I'). If we can establish that z has a field £ of
type T°, then we can assert that e. f has type T and, further,
that it equals z. f. Hence, we can assert that e. f has type
(z:S; T{self==z.f}).

T-INVK has a very similar structure to T-FIELD: we use
“proxy” reasoning for the receiver and the arguments of the
method call. T-NEW also uses the same proxy reasoning;
however, in this case we can establish that the resulting value
is equal to new C(V) for some values V of the given type. The
rule requires that the class invariant of C be established.

Operational semantics. The operational semantics is es-
sentially identical to FJ [29]. It is described in terms of
a non-deterministic reduction relation on expressions. The
only novelty is the use of the subtyping relation to check
that the cast is satisfied. In CFJ, this test simply involves
checking that the class of which the object is an instance is a
subclass of the class specified in the given type; in richer lan-
guages with richer notions of type this operation may involve
run-time constraint solving using the fields of the object.

5.4 Results
The following results hold for CFJ.
THEOREM 5.1 (Subject Reduction). IfT'He:Tande — €’
then for some type S, T -e’ : S,S<: T.
The theorem needs the Substitution Lemma:

LEMMA 5.2. IfTHd:U, and T,X: U U<:V, and T',X :
VI e:T, then for some type S, it is the case that T
e[d/x]:S,S<:X:V;T.

We let values be of the form v ::= new C(¥).

THEOREM 5.3 (Progress). If - e : T then one of the follow-
ing conditions holds:

1. e is a value,
2. e contains a cast sub-expression which is stuck,
3. there exists an €’ s.t. e — €',

THEOREM 5.4 (Type soundness). If - e : T and e reduces
to a normal form €' then either €' is a value v and +
v:S,S<:Tor e contains a stuck cast sub-expression.

6. Related work

Constraint-based type systems. The use of constraints in
type systems has a history going back to Mitchell [40] and
Reynolds [55]. These and subsequent systems are based

3 Note from the definition of fields in O (Figure 4) that all occurrences of
this in the declared type of the field £ will have been replaced by z.

on constraints over types, but not over values. Constraint-
based type systems for ML-like languages [62, 53] lead to
HM(X) [59], a constraint-based framework for Hindley—
Milner-style type systems. The framework is parametrized
on the specific constraint system X; instantiating X yields
extensions of the HM type system. The HM(X) approach is
an important precursor to our constrained types approach.
The principal difference is that HM(X) applies to functional
languages and does not integrate dependent types.

Sulzmann and Stuckey [60] showed that the type infer-
ence algorithm for HM(X) can be encoded as a constraint
logic program parametrized by the constraint system X. This
is very much in spirit with our approach. Constrained types
permit user-defined predicates and functions, allowing the
user to enrich the constraint system, and hence the power
of the compile-time type-checker, with application-specific
constraints using a constraint programming language such
as CLP(C) [30] or RCC(C) [31].

Dependent types. Dependent type systems [64, 16, 38, 6]
parametrize types on values. Constrained types are a form
of refinement type [24, 1, 32, 28, 19, 20, 56]. Introduced by
Freeman and Pfenning [24], refinement types are dependent
types that extend a base type system through constraints on
values.

Our work is closely related to DML, [64], an extension
of ML with dependent types. DML is also built parametri-
cally on a constraint solver. Types are refinement types; they
do not affect the operational semantics and erasing the con-
straints yields a legal DML program. The most obvious dis-
tinction between DML and constrained types lies in the tar-
get domain: DML is designed for functional programming
whereas constrained types are designed for imperative, con-
current object-oriented languages. But there are several other
crucial differences as well.

DML achieves its separation between compile-time and
run-time processing by not permitting program variables to
be used in types. Instead, a parallel set of (universally or ex-
istentially quantified) “index” variables are introduced. Sec-
ond, DML permits only variables of basic index sorts known
to the constraint solver (e.g., bool, int, nat) to occur in
types. In contrast, constrained types permit program vari-
ables at any type to occur in constrained types. As with
DML only operations specified by the constraint system are
permitted in types. However, these operations always in-
clude field selection and equality on object references. Note
that DML-style constraints are easily encoded in constrained
types.

Logically qualified types, or liquid types [56], permit
types in a base Hindley—Milner-style type system to be re-
fined with conjunctions of logical qualifiers. The subtyping
relation is similar to X10’s: two liquid types are in the sub-
typing relation if their base types are and if one type’s qual-
ifier implies the other’s. The Hindley—Milner type inference
algorithm is used to infer base types; these types are used



as templates for inference of the liquid types. The types of
certain expressions are over-approximated to ensure infer-
ence is decidable. To improve precision of the inference al-
gorithm, and hence to reduce the annotation burden on the
programmer, the type system is path sensitive. X10 does not
(yet) support type inference.

Hybrid type-checking [19, 20] introduced another refine-
ment type system. While typing is undecidable, dynamic
checks are inserted into the program when necessary if the
type-checker (which includes a constraint solver) cannot de-
termine type safety statically. In X10, dynamic type checks,
including tests of dependent constraints, are inserted only at
explicit casts or instanceof expressions; constraint solving
is performed at compile time.

Theorem provers have also been integrated into the pro-
gramming language. For instance, Concoqtion [22] extends
types in OCaml [34] with constraints written as Coq [15]
rules. Constraints thus have a different syntax, representa-
tion, and behavior than the rest of the language. Proofs must
be provided to satisfy the type checker. In contrast, X10 sup-
ports a more limited constraint language that can be checked
by a constraint solver during compilation.

ESC/Java [21] allow programmers to write object invari-
ants and pre- and post-conditions that are enforced statically
by the compiler using an automated theorem prover. Static
checking is undecidable and, in the presence of loops, is un-
sound (but still useful) unless the programmer supplies loop
invariants. Unlike X10, ESC/Java can enforce invariants on
mutable state.

Constraints in X10 are over final access paths. Several
other languages have dependent types defined over final ac-
cess paths [17, 48, 51, 45, 50, 49, 14, 25]. In many of these
languages, dependent path types are used to enforce type
soundness for virtual classes [35, 36, 18] or similar mech-
anisms. Jif [41, 13] uses dependent types over final access
paths to enforce security properties: the security policy of an
expression may depend on the policies of other variables in
the program. Aspects of these type systems can be encoded
using equality constraints in X10. For example, for a final ac-
cess path p, p.type in Scala is the singleton type containing
the object p. Scala’s p.type can be encoded in X10 using an
equality constraint C{self == p}, where C is a supertype
of p’s static type.

Pluggable types. In X10, constraint system plugins can
provide a constraint solver to check consistency and entail-
ment of the extended constraint language.

Pluggable and optional type systems were proposed by
Bracha [9] and provide a means of extending the base lan-
guage’s type system. In Bracha’s proposal, type annotations,
implemented in compiler plugins, may only reject programs
statically that might otherwise have dynamic type errors;
they may not change the run-time semantics of the language.
Java annotations [26, 33] may be used to extend the Java type
system with compiler plugins.

Other approaches, such as user-defined type qualifiers [23,
12] or JavaCOP [4] allow programmers to declaratively
specify new typing rules in a meta language rather than
through plugins. We have focused on defining constraint-
checking rules for the control constructs in the basic lan-
guage; additional rules can be defined for type-checking
additional control constructs in the language. For instance,
rules can be defined to ensure that distributed constructs in
X10 are place-type safe. Such type-checking rules may be
implemented in JavaCOP, provided that it is extended with
the underlying constraint solver.

7. Conclusion and future work

We have presented the design and implementation of con-
strained types in X10. The design considerably enriches the
space of statically checkable types expressible in the lan-
guage. This is particularly important for data-structures such
as lists and arrays. Several examples of constrained types
were presented. Constrained types have been implemented
in X10 and used for place types, clocked types, and array
types.

The implementation supports extension with constraint
solver plugins. In future work, we plan to further investigate
optimizations enabled by constrained types. We also plan to
explore type inference for constrained types and to pursue
more expressive constraint systems and extensions of con-
strained types for handling mutable state, control flow, and
effects.
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A. Soundness

Here we prove a soundness theorem for CFJ.

LEMMA A.1 (Substitution Lemma). If T+d:U, I'x: U+
U<:V, and T'X : VI~ e:T, then for some type S, T'I-
e[d/x]:S,S<:x:V;T.

PROOF. Straightforward. [J
LEMMA A.2 (Weakening). I[fT'e:T, then',x:SFe:T.
PROOF. Straightforward. [

LEMMA A.3 (Method body type). If
Iz:THzhasm(zZ:U){c}:S=e,

andT,z:T,Z: THT<:U, then for some type S’ it is the case
thatT,z:T,Z:Tke:S S":S.
PROOF. Straightforward. [

LEMMA A.4. IfT' - S<:T, then
(z:S; co)[x/self]bFo (z:T; co)[x/self]
where X is fresh.

PROOF. Straightforward. [J

LEMMA A.5. IfT',x:U,ckpcoand 't t: U, then
I, c[t/x] Fo colt/x].
PROOF. Straightforward. [

LEMMA A.6. If T - S<: T, and o(I',f : T) ko co, then
o(l',£:S) o co.

PROOF. By induction on the derivation of I' - S<: T. We
proceed by cases for the last judgment in the derivation.

® S-ID. Trivial.

e S-TRANS. Straightforward from the induction hypothe-
sis.

e S-EXTENDS. We have S = C and T = D. From the defini-
tion of 6(+) we have

o(l'f:C)=0(l,£:D) =0c(]).

The conclusion follows easily.
¢ S-CONST-L. We have S = T{c}. Assume 6(I', £: T) o
co. From the definition of 6(-) we have

o([,f:T{c}) =o(T,£:T),c[f/self].

Since o(I',£ : T) ko co, it follows immediately that
o(I,£:T),c[f/self] o co.

® S-CONST-R. We have T = U{c} and I' F S<:U and
I'self:Skc.

O

Assume o(T", £: U{c}) o co. From the definition of 6(-)
we have

o([,£:U{c}) =o(T,f:U),c[f/self].

Thus, o(T, £ : U),c[f/self] o co.

Since I',self: S+ ¢, we have I', £ : S+ c[f/self], and
hence 6(I', £ : S) o c[f/self].

Since I' - S<: U, applying the induction hypothesis to
c[f/self], we have 6(T", £ : U) o c[f/self]. Therefore,
in the judgment 6(I", £ : U), c[f/self] o co, c[f/self]
is redundant and we can conclude 6(I', £ : U) ¢ co.
Finally, applying the induction hypothesis to cp, we have
o(l,£:S) o co.

S-EX1STS-L. We have S=x:U; Vand I" - U type and
I'p V<: T where x is fresh.

Assume (I, £ : T) ko ¢o. By the induction hypothesis,
o(I',£:V) Fp co. Adding x : U to the assumptions, we
can conclude o(T',x : U, £: V) ko co.

From the definition of 6(-) we have

ol f:(x:0; V))=o(l,x:U,£:V).

Thus, 6(T",£: S) Fo co.

S-EXI1STS-R. We have T=x:U;Vand '+t : U and
't S<:V[t/x].

Assume o(T, £: T) ko co. From the definition of 6(-) we
have

o[ f:(x:0; V))=0o(,x:U,£:V).

Thus, 6(I,x: U, £:V) ko ¢p. Since I'F x : U, we can show
via Lemma A.5 that 6(T', £ : V[t/x]) Fo co[t/x].

Since ' F ¢ : 0, x is not free in cg. Thus co[t/x] = ¢y
and o(T", £ : V[t/x]) ko cp. Since, I' Fp S<: V[t/x and
o(T, £ : V[t/x) Fo co, by the induction hypothesis, we
have o(T", £ : S) ko co.

LEMMA A.7. if T, £: THU<:U, and T+ S<:T, then T, £ :
SFU<:U.

PROOF. Follows From Lemma A.6. OJ

LEMMA A8. if '+ S<:T, then ' F E{z : S;co}<:E{z:
T;C()}.

PROOF. To prove the desired conclusion

I'FE{z:S;co}<:E{z:T;¢p},

we need to show that

o(I,x:E{z:S;co}) Fo (z: T;co)[x/self].

We have

o(I'x:E{z:S;co}) =o(T,(z: S;co)[x/self])



From Lemma A.4 and ' - S<: T, we have

(z:S5¢c0)[x/self] o (z:T;co)[x/self].
From

o(I',x:E{z:S;co}) =0o(T,(z: S;co)[x/self])

and

(z:S;c0)[x/self] o (z:T;co)[x/self],
we conclude

o(I',x:E{z:S;co}) Fo (z: T;co)[x/self].

O

LEMMA A.9. IfTHS<: T, and T,z : S+ fields(z) = Fy,
and T,z : T+ fields(z) =F,, then F; is a prefix of Fy.

PROOF. Follows from Lemma A.6 and rules for fields in
0.0

LEMMA A.10. If ' S<:T, and ',z : T+ z has I, then
I'z:Skzhas 1.

PROOF. Follows from Lemma A.6. J

LEMMA A.11. If T F (x : S;T{c}) type, then T' I (x :
S;T{c})<:T{x: S; c}).

PROOF. Straightforward. [

THEOREM A.12 (Subject Reduction). IfT'-e:Vand e —
€/, then for some type V,T' e :V and T - V' <: V.

PROOF. We proceed by induction on the structure of the
derivation of I' - e : T. We now have five cases depending
on the last rule used in the derivation of I'-e : T.

e T-VAR: The expression cannot take a step, so the conclu-
sion is immediate.
e T-CAST: We have two subcases.
» R-CAST: For the expression o as V, where o =

new C(d), we have from T-NEW that
['Fo:C{Z:T;new C(Z) = self;inv(C,self)}.
Additionally, we have from R-CAST that
- C{new C(d) = self}<: V.

We now choose

V' = C{z: T;new C(z) = self;inv(C,self)}.
From S-EXISTS-L,

I'+Z:T;C{new C(Z) = self;inv(C,self)}

<:C{new C(d) = self}.
From Lemma A.11,

I'+7Z:T,C{new C(Z) = self;inv(C,self)}
<:C{Z:T;new C(Z) = self;inv(C,self)}

Thus, from S-TRANS, ' V' <: V.

= RC-CAST: For the expression o as V, we have from
T-CAST that I' - o : U. Additionally, we have from
RC-CAST that 0 — o’. From the induction hypothe-
sis, we have U’ such that T o’ : U/ and TF U’ <: U. We
now choose V' = V. From I' - o’ : U’ and T-CAST we
derive 't 0’ as V: V. From V/ = V and S-ID we have
r-v<:v.

e T-NEW: We have a single case.

* RC-NEW-ARG: For the expression new C(€), we

have from T-NEW that

'e:T,

F class(Q),

I'Fz:Ck fields(z)=f£:S,
I'Fz:Cz:T,z.f=2FT<:S,inv(C,z).

We choose V=C{Z: T;new C(Z) = self,inv(C,self)}.
Additionally, we have from RC-NEW-ARG that e; —
e}. From the induction hypothesis, we have U; such
that 'k e} :U;and I'- U;<: T;.

For all j except i, define U; = T and e’j = e;. We have
I'-e:UandI'-0U<:T.

From Lemma A.2, we have

I'z:¢,z:0,zf=2z+U<:T.
From T-NEW, we have
I'-z:C,z:T,zf=ZzFT<:S.
From Lemma A.7,
'z:¢,z:0,z.f=2ZFT<:S.
From S-TRANS, we have
'Fz:¢,z:0,zf=2zFT<:S.

From T-NEw,
I'Fz:Cz:T,z.f=2zFinv(C,z).
From Lemma A.7,
I+z:Cz:0,z.f=2Finv(C,z).
Thus, by T-NEW,
['+new C(€):C{z:U;new C(z) = self,inv(C,self)}
and we choose
V' = {z:U;new C(Z) = self,inv(C,self)}.

From Lemma A.4, we have T F V' <: V.
e T-FIELD: We have two subcases.



* R-FIELD: For the expression (new C(€)).f;, we have
from T-FIELD that

I'He:sS,
I'Lz:Skzhas f;: U,

Let V= (z:S;U;{self==z.1;}). z is fresh.
We have

S =C{Z: T;new C(Z) = self,inv(C,self)}.
From T-NEW, we have '€ : T and
I'-z:¢,z:T,zf=2ZFT;<: U,

From T'F¢€: T, we have ' e; : T;. We now choose
V=T,
By T-NEW,

Iz:C,z:T,zf=2ZFT;<:U,.
By S-CONST-R,
I,z:C,z:T,z.f=2zF T;<:U;{self = z;}.

Since z.f; = z;, by application of S-ID, S-CONST-L,
and S-CONST-R, we have

[,z:C,z:T,z.f=2ZF T;<: U;{self = z.f;}.
We can then show via S-EXISTS-R that
[ETi<:(z:S;U{self =z.1;}),

or more simply '+ V' <: V.
» RC-FIELD: Follows from the induction hypothesis
and application of Lemma A.8.
e T-INVK: We have three subcases.

» R-INVK: For simplicity, define dy = new C(€). For the

expression do.m(d) we have from T-INVK that

I'Fdo:To

I'=dpg: Trn

I, 20 : Towm b 2o has m(zy.,:Up){c}:S=e
I, 2o - Town b T1p <2 Upy

I,z : Ton F C

where z(., is fresh. By T-NEW, we have '~ € : A and
To=C{Z: A;self =new C(Z),inv(C,self)}.
Since
[, 20 : Tom b zo has m(zy.,,:Upy){c} : S=e,

and I',zg,, : To. F Ty <:Upy, by Lemma A3, we
have for some S’ I'zg.,, : To., -e: S, S <: 8.
Choose V= (2o, : Toun; S').
From R-INVK, we have dg.m(d) — e[dp,d/this,Z].
By Lemma A.l, T' I e[dy,d/this,z] : V, and T -
V'<: 20 : Toms S.

» RC-INVK-RECV: Follows from the induction hypoth-
esis and application of Lemma A.8.

= RC-INVK-ARG: Follows from the induction hypoth-
esis and application of Lemma A.8.

O
Let the normal form of expressions be given by values v ::=
new C(V).

THEOREM A.13 (Progress). If - e : T, then one of the fol-
lowing conditions holds:

1. eisavaluev,

2. e contains a subexpression new C(V) as T such that t/
C<:T[new C(V)/self],

3. there exists € s.t. e — €.

PROOF. The proof has a structure that is similar to the proof
of Subject Reduction; we omit the details. [

THEOREM A.14 (Type Soundness). If- e : T and e —* €/,
with €' in normal form, then €' is either (1) a value v
with = v :S and - S<: T, for some type S, or, (2) an ex-
pression containing a subexpression new C(V) as T where
I/ C<: T[new C(V)/self].

PROOF. Combine Theorem A.12 and Theorem A.13. OJ



