- Case 2:03-cv-00294-DAK-BCW Document 476 Filed 07/05/2005 Page 1 of 24

Brent O. Hatch (5715)

Mark F. James (5295)
HATCH, JAMES & DODGE
10 West Broadway, Suite 400
Salt Lake City, Utah 84101
Telephone: (801) 363-6363
Facsimile: (801) 363-6666

Stuart H. Singer (admitted pro hac vice)
BOIES, SCHILLER & FLEXNER LLP
401 East Las Olas Boulevard — Suite 1200
Ft. Lauderdale, Florida 33301

Telephone: (954) 356-0011

Facsimile: (954) 356-0022

Attorneys for The SCO Group, Inc.

£ QpGINAL

IIC'

US.DISTRICT COURT

Robert Silver (atdlmtte(nlB %Tac ’V)’ICE:? ' 45
Edward Normand (adrmm;egl proshac v%cq)
Sean Eskovitz (admltted pro hac vice)
BOIES, SCHILLER &\PLEP%I%IER LLE .
333 Main Street Prlead
Armonk, New York 10504 - .
Telephone: (914) 749-8200
Facsimile: (914) 749-8300

Stephen N. Zack (admitted pro hac vice)
BOIES, SCHILLER & FLEXNER LLP
Bank of America Tower — Suite 2800
100 Southeast Second Street

Miami, Florida 33131

Telephone: (305) 539-8400

Facsimile: (305) 539-1307

IN THE UNITED STATES DISTRICT COURT
FOR THE DISTRICT OF UTAH

THE SCO GROUP, INC.
Plaintiff/Counterclaim-Defendant,
V.

INTERNATIONAL BUSINESS
MACHINES CORPORATION,

Defendant/Counterclaim-Plaintiff.

DECLARATION IN SUPPORT OF
SCO’S MOTION FOR
CONTINUANCE PURSUANT TO

RULE 56(f)
[Docket No. 198]

(REFILED IN REDACTED FORM)
Case No. 2:03CV0294DAK

Honcerable Dale A. Kimball
Magistrate Judge Brooke C. Wells

Case 2:03-cv-00294-DAK-BCW Document 476 Filed 07/05/2005 Page 2 of 24

DECLARATION OF CHRIS SONTAG
I My name 1s Chnis Sontag and { am Senior Vice President and General Manager of
The SCO Group, Inc. My office ts located in Lindon, Utah. Unless otherwise noted or evident
from their context, this declaration is based on my personal knowledge and information available
to me from reliable sources. To the best of my knowiedge, information and belicf, the facts set

forth herein are true and correct.

2 { submit this Deciaration in support of the Plaintiff"s Motion for a Continuance

&

Pursvant to Rule 56(f) (the “Motion™).

3. The Court should grant a continuance to allow SCO to conduct certain discovery
that SCO requires to rebut IBM's Cross-Motion for Partial Summary Judgment on its Tenth
Counterclaim for Declaratory Judgment of Non-Infringement (“IBM's Cross-Motion™). In

addition, SCO will require sufficient time to review the matenals preduced by IBM 1n the event

the Court grants the Motion.

I Introduction

4, For SCO to obtair all nceessary and reasonable evidence to support its claims and
to oppose IBM’s Tenth Counterclaim, SCO must undertake a line-by-line cémparison of Linux
code and UNIX code. Based on our review to date, SCO believes that such comparison will
reveal substantial similanty between the Linux and UNIX code.

5. There are inherent obstacles 1n identifying substantial similarities between UNIX
and Linux. Both the UNIX and Linux operating systems are large and complex computer
programs with many lines of code to compare. Furthermore, Linux code that is modified or

derived from UNIX code may not necessarily bear line-for-line character similarity.

3

Case 2:03-cv-00294-DAK-BCW Document 476 Filed 07/05/2005 Page 3 of 24

0. A kemel is the core portion of the operating system. The kemel performs the
most essential operating system tasks, such as handling disk input and output operations and
managing the internal memory.

7. The operating system kernel is a lengthy, complex computer program comprising
numerous modules and files, and milfions of lines of code. The Linux kemel (ver. 2.4)

comprises 4 milhon lines of code and the UNIX SVR 4.2 MP kemel comprises 3.4 million lines

of code.

8. To show that Linux code is substantially similar to UNIX code requires a
comparison of that code which, as described below, is an undertaking of great magnitude and
complexity. In other words, the 4 million lires of Linux code must be compared with the 3.5
million lines of UNIX code, line-by-line, or in groups of lines according to the structure,
sequence or function of the group of lines. [n the paragraphs that follow, [will describe a time-
consuming and resource intensive approach to this process, and ways in which this process can
be streamiined.

9. There are two basic ways to erecute the code comparison: 1} ustng an automated
process or computer program, and 2) manual review by a knowledgeable individual.

10. Attempting to use an automated process to perform a complete comparison of all
of the source code in UNIX and Linux computer operating systems is not feasible. Automated
tools to find copied lines of code are available “off-the-shelf.” The tools are designed to find
lines of code that are identical in cvery detail; they perform that function well. SCO and its
experts have sought to modify and improve the rtools to locate lines of code that are not identical

but that are nearly identical; the tools have not always performed that function well. The

Case 2:03-cv-00294-DAK-BCW Document 476 Filed 07/05/2005 Page 4 of 24

automated tools occasionally assist a programmer locate blocks of code that might have
similarities. The programmer must then visuaily review the code in a difficult and lahor-
intensive process. Ofien this review is only possible 1f each version of the code can be reviewed
to follow the changes {rom one version to the next.

11 Minor changes to a line of code such as punctuation, renaming a variable,
changing comments, spelling changes, or alterations to the text will prevent the automated
system fr.om locating the matches in the lines of code. Similarly, inserting, deleting, or
reordering lines of code will prevent the automnated system from identifying a block of similar

code. The reordering of lines of code may render the automated system useless.,

12 Despite these shortcomnings, and as described further below, SCO and its expens
have used automated tools to focate lines of identical code, and they have visually analyzed the
larger blocks of code in which those lines appear. For example, in a block of code having 100
lines, if two or three lines were found 10 match, a visual review would then be undertaken of the
entire (00 [ine block of code looking for other similarities.

13. The automated tools may provide “false positives” that need to be manually
reviewed. Some automated tools can provide a numerical value or percentage that represents a
degree of similarity. In practice, however, files with very low similarity numbers are sometimes
found to be substantially similar, while others with high values of numerical similarity have been
found not to be substantially similar. Therefore, files need to be checked manually and the
numertcal similarity number is of little assistance.

14, Because of shortcomings with automated code comparison processes, SCO and its

experts must rely targely on manual comparisons. Such manual comparisons are very labor and

Case 2:03-cv-00294-DAK-BCW Document 476 Filed 07/05/2005 Page 5 of 24

time Intensive. SCQO and its experts must know or leam both the UNIX and Linux operating
systems detatl. This process can take many months. To execute the companson, without
some roadmaps or list of “hot spots™ in Linux, SCO and its experts must compare page after page
of code. The 4 million lines of Linux kermel code takes up 66,000 pages; the 3.4 million lines of
UNIX code takes up 58,000 pages. A simplistic manual comparison would involve placing the
pages of code side by side in some ordered manner and then looking for the same or similar
structure, sequence and organization of the code. Assuming each page compartson takes one 1)
minute, and that there are 66,000 x 58,000 comparisons, this “initial” review could take on the
order of 25,000 man-years. Fotlowing the nitial review, SCO and tts experts must conduct a
detailed companson of likely copying candidates. T'his “second-level” review would also be
very lengthy.

15. One shortcut to comparing the UNJX and Linux code might be comparing similar
direcrory structures of the UNIX and Linux operating systems. For example, version 2.4 of the
Linux kemel contains 330 subdirectories and about 8750 source and assemibly flles. See

Understanding The Linux_Kemel, D. Broet, O’'Reilly, 2003. Assumiag each of the 8750 files

requires one (1) day to investigate, about 35 man-years would be required to review all the Linux
kemel files. However, this caiculation ignores the possibtlity that the two operating systems use
different file names, and that similar code sequences may reside in entirely different files.

16. Another shortcut may be to compare files from the UNIX and Linux operating
systems that share the same or similar names (because the names of certain files correspond to

the file's function). However, any significant overlap in the names of files berween the UNIX

and Linux operating systems is statistically unlikely.

Case 2:03-cv-00294-DAK-BCW Document 476 Filed 07/05/2005 Page 6 of 24

17. Two ways of determining the number of files in any two computer operating
systems that share the same or similar names are: (1) look for files whose names share the el;xact
same characters in the exact same order, or {ii) look for files whose names share almost ali of the
same characters 1n almost the exact same order. To produce the most relevant results, each such
search should take account of certain pre-defined language tokens (whose similarity between
operating sysle}ns 1s not particularly probative of copying).

18. To “loak” for such files, SCO and its experts have used computer programs to
compare the thousands of files in UNIX and Linux operating systems. That is, based on the
limited discovery to date and the operating systems that SCO already possessed or were
publically available, SCO performed initial searches to find fiies that share the same or similar
names. These comparisons represent only a small fraction of the total number of comparisons
that could be made among the numerous versions of the UNIX, AIX/Dynix, and Linux operating
sysiems.

19. The foregoing searches have permitted SCO and its experts to identify numerous
files that, as between the UNIX and Linux operaung systems, share the same o- very similar
names. SCO and its experts have used the results of the file searches to then turn to comparing
the source code in those files.

20. Once they identified particular files with the same or similar names in UN1X and
Linux, SCO and its experts used a combination of a computer program and manual review of the
results of the program to find instances of substantial similarity in the operating systems. There
are signtficant limitations to any such approach, and there is no way Ié eliminate human review

and assessment of the program’s results -- both of which are extremely time consuming.

Case 2:03-cv-00294-DAK-BCW Document 476 Filed 07/05/2005 Page 7 of 24

21, SCO and us experts have used computer programs to idenufy the extent of
similarity berween lines of source code in any two given files. The results of one computer
program shows where there are any differences between the lines of code. When a secand
computer program is run on those results, it shows where the lines of code (although different in
some way) nevertheless contain the same code in the same sequence.

22, Once both computer programs have been run, SCO and its experts manually
reviewed the results to assess the similarity between the lines of code at issue. The manual
reviewer searches for instances where parts of the lines of code being compared are syntactically
synonymous. That is, the reviewer determines whether the Jine of code in one file uses different
words or characters to describe the same structure, function, declaration or subroutine as a line of
code in the other file.

23, To date, this combination of automatic and manual review has been completed for
only a very small portion of the Linux and UNIX operating systems, despite a signtficant man-
hour expenditure, on the order of two-man years.

24, Another way for SCO to obtain all of the reasonably available and necessary
evidence to support its claims and to oppose IBM’s Tentlh Counterclaim is to access lhe
numerous [BM and Sequent engineers and programmers who have, over the years, developed
AIX and Dynix code, contnbuted AIX and Dynix code to Linux, or assisted others in
contributing to Linux. These engineers have access to and have studied UNIX based operating
;ystcms that have been enterprise hardened and made multiprocessor capable.

25. Once identified, the programmers and engineers can be deposed and can: provide

identities of Linux contributors for further discovery, discuss their own Linux contributions,

Case 2:03-cv-00294-DAK-BCW Document 476 Filed 07/05/2005 Page 8 of 24

discuss assistance given to Linux contributors, and discuss specific code segments that were
contributed to Linux. This will also assist SCQ in identifying former IBM employees who are
contributing to Linux.

26. As will be discussed below, a revision control system (RCS — implemented by
IBM as the Configuration Management/Version Control (CMVC) is an excellent source for
finding the programmers and engineers familiar with relevant UNIX based code that has been
contributed by IBM and third parties to make Linux enterprise hardened and multiprocessor
capable. Deposing these programmers and engineers will allow SCO to prionitize its efforts to

find Linux code that is substantially similar to UNIX code.

27. As discussed in the Declaration of Sandeep Gupta, the Linux kerel uses a ULS
routine to block and unblock access to shared data. The Linux ULS routine is substantially
similar to a ULS routine in UNIX. A Mr. Russel of IBM helped a Mr. Jamie Lokier contribute
the UNIX ULS code into Linux. [f SCO had access 1o IBM'’s CMVC, then SCO might have
discovered that Mr. Russel worked on ULS for IBM, and could have deposed Mr. Russel to
determine what specific help he provided in the contnbution of ULS to Linux and to whom he
provided that help.

28, Using the CMVC, and by deposing individuals such as Mr. Russel of IBM, SCO
can significantly reduce the burden of reviewing Linux and UNIX code. Mr. Russel and other
programmers can identify areas of Linux code that are copies of or are detived from ALX and
Dynix code. Mr. Russel and other programmers can also identify contributors to the Linux code

and can show the necessary access to AIX and Dynix that these contnibutors bad.

Case 2:03-cv-00294-DAK-BCW Document 476 Filed 07/05/2005 Page 9 of 24

29 SCO also can streamline obtaining all of the reasonably available evidence to
support its claims and to oppose IBM’s Tenth Counterclaim and can prionitize its search of Linux
code that is sub.%rantia”y similar to UNIX code by examining the lineages of AIX and Dynix. By
examining the source cede in successive versions of ADX and Dymix, SCO can trace its UNIX
code through to current versions of ADX and Dynix to determine where in Linux, SCO’s UNIX
code is copied. This tracing will allow SCO to prioritize its search of Linux code for evidence of
copying of UNIX code.

30. Software (i.e., source code) undergoes many changes during its initial
development and later over its operational life. Changes may occur as frequently as daily and
can conunue for years. Software changes typically are driven by the need to correct “bugs,” to
improve features, or 1o add new features. Because of changes made to source code over time, a
cuirent code version may “look" different than the imtial code version, making identification of
the initial code version difficult and substantial similarity and derivation more difficult to
establish.

31, Software developers rely on version control systems (V(CSs), or version
management systems (VMSs), to control changes and revisions to source code. Version control
systems are automated tools that provide specific access and tracking features to allow multiple
parties to operate on and revise source code. For exampie, a “Checkout” feature allows a user (o
retrieve, from a source code repository, a section of source code for which some changes are
intended. A “Checkin” feature deposits the changed source code in a source code repository.
Version control systems also provide an app,rdval process, and many other features. In short,

version controls systems are software tools that provide detailed software change histories.

Case 2:03-cv-00294-DAK-BCW Document 476 Filed 07/05/2005 Page 10 of 24

32. Related 10 the VCS 1s a “bug” tracking system or log. The bug tracking sysiem
allows users to log problems encountered with source code. Some bug tracking systems 1are
implemented as.web service applications, and allow software users to register problems usifg a
Web page-provided form. Other bug tracking systems are internal to the company developing or
supporting the source code. Because software changes are often driven by problem reports, it is
natural to integrate these bug tracking systems with version control systems: this allows for a
framework where changes resulting from a bug report can be casily located, and where some
measure of certainty is provided that changes have been integrated into & product release. For
large-scale software development projects, such integration is mandatory.

33 Both VCSs and bug tracking systems typicaily allow for some type-: of
commentary to explain why a source code change was needed and to explain what was changed.
VCSs and bug tracking systems are typically maintained in an electronic format, although
hardcopy printouts may be available.

34. The advantage of the VCS 15 that it is an ongoing snapshot of how the software
development took place. The VCS allows a user to view, through time, ail changes to software
by time and date, author, and possibly a reference to the bug tracking system. The VCS is an
essential too! for software developers. For example, a bug may be reported to a software
company, and to develop a correction, a software developer may refer back several years, or
even decades, to prior versions of code so as to understand how the error (bug) developed, and

how to revise the code to eliminate the bug. Without the VCS, this process could not be

completed.

10

Case 2:03-cv-00294-DAK-BCW Document 476 Filed 07/05/2005 Page 11 of 24

35, The VCS ts also an essential tool that SCO can use to support its claims and to
oppose IBM's Tenth Counterclaim. By viewing each version of AIX and Dynix, along with the
associated CMVC or similar system, SCO will be able to wrack a Dynix/AIX code segment
through its many denvative versions to its ultimate location in Linux. This will significantly
streamline SCQO's efforts to find code in Linux that is substantially similar to UNIX cade.
Moreover, the CMVC will identify programmers who can be deposed and who can explain
where in Linux the code was contributed. By viewing each version of the Dynix/AIX code, SCO
will be better able to determine if the structure, sequence, and organization of the conesponding
Linux code matches that of UNIX.

II. Discovery Required From IBNM

36. Similar to a software developer chasing a bug through time, SCO should be able
to trace the development of UNIX-based source code from its initial AIX and Dynix versions
through to current versions of the ALX and Dynix code and then into Linux. AIX, Dynix, ptx,
and Dynix/ptx consist of millions of lines of source code, much of which likely will have
undergone numerous (possibly hundreds) of changes. Tracing the current ALX, Dynix, pix, and
Dynix/ptx code versions to earlier code versions, and then ultimately to the corresponding UNIX
code, will not be possible within any workable timeframe without a detailed “road map.” The
VCSs and bug tracking systems provide this road map. Additionally, the VCSs idenufy the
software developer who authored the change and may now be assisting with deveiopment of
Linux. These developers can be deposed to provide information that will help SCO prioritize iis

efforts to locate Linux code that is substantially simtlar to UNIX code.

1

Case 2:03-cv-00294-DAK-BCW Document 476 Filed 07/05/2005 Page 12 of 24

37. Shown and descnibed below i1s an example of UNIX SVR4 source code
illustrating accumulated modifications over time. This is SCO source code for which SCO has
the versions avéilab]e. The specific file name is perror.c.' Table | illustrates PETTOr.C Version
1.1, written in 1981 as compared i0 version 1.17, written 1n 1992, The shading indicates
differences berween the two versions. As can be seen from a casual review of the table, ovet 50
percent of the source code lines changed from the [98] version to that from 1992, In fact,
perror.c version 1.17 is so changed {rom version 1.1, that even an experienced UNIX

programmer would have trouble determining that one was derived from the other.

38. The difference ploi shown in the above Table | is replicated in color as Exhibit A.
In the exhibit, the shaded areas are shown in two colors, pink and yellow. The yellow-shaded
areas are lines of code where differences exist. Within each yellow-shaded arca are pink-shaded
areas that highlight specific differences in the code. Unshaded areas in the exhibit are fines of
code were the rwo versions are identical.

39. Table 1 and Exhibit A show differences between UNIX code versions 1.1 and
1.17, and the differences are significant. However, as the code version numbers imply, there are
many versions of the perror.c file from 1981 to 1992. Each of these code versions involves
generally small variations from prior vf:rsions. It is the accumulation of these changes over time
that makes the final version (i.e., version [.17) look so different from the inital version (i.e.,

version 1.1). Exhibits B through L are differences plots of selected neighboring perror.c versions

! The code file “perror.c™ is an unusual example of a UNIX source code file in that the file consists of pnly
one short function {to generate a one-line description of the most recent error code, and provide a diagnestic).
perror.c is written in 2§ lines (in version 1.1). More typically, UNIX source code files consist of muitiple functions
and thousands of lines of code. File perror.c was chosen as an example for this Declaration because it illustrales the

relevant concepts related {o version control in a compact, easy te understand format.

12

Case 2:03-cv-00294-DAK-BCW Document 476 Filed 07/05/2005 Page 13 of 24

Table 1

REDACTED

Case 2:03-cv-00294-DAK-BCW Document 476 Filed 07/05/2005 Page 14 of 24

from the initial version 1.1, through version 1.17. Viewing any of Exhibits B through L, a
skilled UNIX programmer can readily see the evolutionary, derivative nature of the perror.c code
development from 1981 to 1992, This derivative nature 1s not, however, readily apparent (o the
same skilled UNIX programmer based on the difference plot of Exhibir A aloné.

40. As noted above, programmers use a VCS to track changes to code. The V(S
serves as a road map that tracks all the code changes over time. Exhibit M is a printout of that
portion of a VCS related to the perror.c file. As can be seen from Exhibit M, each change in the
perror.c file is accompanied by an entry in the VCS that includes the date, identity of the author,
and a comments section that lists the nature of and the reason for the change. Each entry in the
VCS also references a corresponding entry in a bug tracking log. For example, entry D1.10 in
the VCS, which relates to the change in perror.c from version 1.9 to version [.10, refers to
corresponding entry (referred to as UNIX Modification Request # bi86-28117) in the bug
tracking log. Exhibit E shows the difference plot for this change. Exhibit N 1s the corresponding
entry bi86-28117 from the bug tracking log. As can be seen from Exhibit N, the bug tracking iog
entry describes the specific problem that exists with the current version (in Exhibit E, the noted
problem 15 that the existing error code does not check for an error (errno) less than zero) and lists
what should be done to the perror.c code sequence to correct this problem. The bug tracking log
entry also [ists the onginator of the log entry (in Exhibit E, D.E. Good), and the individual

assigned to correct the problem {mac). The log entry further identifies the individual who

approved the proposed problem correction (prb), the rcason for change (error in design

implementation) and other information that relates to the perror.c code.

. Case 2:03-cv-00294-DAK-BCW Document 476 Filed 07/05/2005 Page 15 of 24

41. Viewing Exhibit B, which 15 the difference plot between perror.c versions 1.9 and
1.10, line 20 of versions 1.9 and 1.10 are highlighted. The actual code change between the

versions 1s shown in Table 2:

Table 2

REDACTED

42, As the example in Table 2 makes clear, even a skilled programmer would likely
not be able to determine the denvation of the current perror.c code sequence without a road map
that lays out specific changes in detail.

43, In view of the information provided in Paragraphs 4 - 42, SCO requires the
following materials to analyze source code so that it can rebut IBM's Tenth Counterclaim:

¢ all version contro! system and bug tracking information (including documents,
data, logs, files, and so forth) for ALX, Dynix/ptx, ptx, and Dynix from 1984 1o

the present,

¢ source code and log tnformation for all intenm and released versions of AlX|
Dynix, ptx and Dynix/ptx from 1984 o the present, and

» depositions as appropriate of programmers identified from the foregoing.

44, The VCS information is especially important to SCO’s opposition of IBM’s Tenth

Counterclaim. Without VCS information for AIX, Dynix/pix, ptx, and Dynix, and any related

{5

Case 2:03-cv-00294-DAK-BCW Document 476 Filed 07/05/2005 Page 16 of 24

information such as documents, data, logs, files, SCO will not be able to prioritize its efforts to
identify all lines of code in Linux that are derived or copied from UNIX System V. SCO will
instead have to rely on luck and happenstance to find derived and copied code, then trace such
code back to System V. The VCS information, however, will help SCO streamtine its search
efforts to find evidence that Linux code was copied or derived from UNIX System V code.

45. The matenals in Paragraphs 31 and 32 ~ both the VCS information and the source
code and log information - directly respond to IBM’s factuaf allegations that the Linux code was
developed or created by programmers, rather than taken from System V. See, e.g., [BM s Cross-
Motion §§ 1 (“collaborative development™); 2 (Linus Torvalds created a2 “new” operating
systemm); 3 (“programmers joined to create code™); 4 (developers “contributed to the further

development of Linux™). The VCS information will establish that various versions of AIX and
Dynix are in fact derivative works of UNLX System V), and consequently, IBM's contributions to

Linux from AIX and Dynix constitute copynight infringement.

46, Furthermore, the VCS information and the source code and log information will
alow SCO-1o rebut IBM's allcgations that SCO cannot prove copying ({BM's Cross-Motion
46 (SCO cannot show that 1BM'’s activities infringe SCO’s copynights); 48 (SCO cannot
establish that material in Linux is covered by SCO’s copyrights}), as such information shows the
history of development of AIX and Dynix code, the authors of the various versions of those
systems, and the sources of the code. In other words, if a portion of Dynix code was obtained
from UNIX System V, the VCS information for Dynix would show where that portion of code

originally came from, who obtained it and when, and how that code was used n Linux.

16

Case 2:03-cv-00294-DAK-BCW Document 476 Filed 07/05/2005 Page 17 of 24

47, SCO believes that much of its copyrighted code was copied from AIX and Dynix
into Linux. While SCO has some evidence of hteral copying between System V on the one
hand, and Linu% on the other hand, the VCS and source log information will show changes
between various versions of AIX and Dynix, and the detailed history of those changes. Thus,
SCO will be able to show that Linux code 15 substantially similar to UN1X code. SCQO must have
this material 1o establish what material in Linux 1s covered by SCO’s copyrights, which 1BM
alleges SCO cannot do. JBM's Cross-Mation | 48.

48 The evidence SCO currently has — three verstons of AIX that [BM selected,
Linux code, and System V code — is insufficient 10 show infringement because IBM could have
copied System V code into any number of the multiple versions of AIX and Dynix. To trace
SCO-owned code from System V into the code’s current form in Linux, SCO must be able to
trace every step and change the code underwent through AIX and Dynix. To do so, SCO
requires the VCS information and the source code and log information. Without this matenial,
SCO will not be able to pniontize and streamline its search efforts and will have to expend
considerable time aﬁd resources 1o find evidence that Linux code is substantially similar to
UNIX code.

45. IBM will not bear any significant burden to produce VCS information, IBM
stores this information on its Configuration Management Version Controf (CMVC) system. See
IBM’s CMVC Introduction {1710058191-92) (Exhibit O hereto).

50. SCO also requires the following materials to oppose IBM's Tenth Counterclaim:

All design documents, white papers and programming notes, created from [984 to the present.

17

Case 2:03-cv-00294-DAK-BCW Document 476 Filed 07/05/2005 Page 18 of 24

These matenals provide a weaith of information refated to code development beyond that which
can be found in the source code testing, VCS and bug tracking log.

51 White papers are usually generated early in the sofrware code development
process, and often discuss reasons for implementing code changes, problems with existing code,
and alternative solutions. Thus, white papers serve as an early indication of possible code
changes. By setting forth solutions, white papers can be used to look for specific code segments
in Linux and thus help SCO prionttize its search.

52. Design documents are often prepared by the group that vltimately authors the
changes to the code sequences. Design documents are generatly more detailed that white papers.
For example, SCO propriety design document “Virtual Memory Design for UNIX System V
Release 4.2 Multiprocessor,” contains almost 150 pages of detailed description and code
requirements to implement virtual memory in a UNLX-based processor. The design document is
dirccted to such implementation on a specific processor family, namely the Sequent Symmetry
Model S16. This and other design documents explain the nitial code concepts, and how such
code will be deve]opcd' and written. As such, design documents provide an invaluable bridge
between existing code sequences, such as in UNIX, and deri.vative works, such as in ALX and
Dynix. Because these design documents describe the basis for code development, they may be
usefui for pointing to a portion of Linux that contains code substantially similar to UNIX code.

53. Finally, programming notes contain the thought processes of individual
programimers as they write and revise code sequences. For example, programming notes might
list changes made to code, and might list additional changes to consider. As such, programming

notes provide detailed rationale for code changes and an indication of how the code may change

18

Case 2:03-cv-00294-DAK-BCW Document 476 Filed 07/05/2005 Page 19 of 24

in the future. Programming notes may reflect the purpose for code changes and where in the
kemel those changes ocecur. Thus programming notes are another source SCO can use to
strearnline its efforts to locate Linux code that is substantially similar 1o UNIX code.

54. SCQO requires these white papers, design documents, and programming notes for
all AIX, Dymix, ptx, and Dynix/ptx.

53. To find copying of other operating systems (c.g., ALX, Dynix, ptx, and Dynix/px)
and features of UNIX System V, SCO must have the discovery related to items listed in
Paragraphs 4 - 54. SCO believes that many of these features of its System V were copied,
directly and/or indirectly, into AIX and Dynix by IBM. Therefore, SCO requires discovery of
matenials related to these aspects of AIX and Dynix to establish IBM’s copynght infringement
and rebut its Cross-Motion. Also, information 1s needed as to these code sequences to determine
if some UNIX code has been copied, and if the Linux version is a substantially similar to UNIX.

56. SCO previously requested the above-listed matenials in SCO's Memorandum
Regarding Discovery submitted to Magistrate Judge Brooke C. Wells on May 28, 2004, pursuant
to Magistrate Judge Wells' Order dated March 3, 2004. To date, Magistrate Judge Wells has not
ruled on SCO's May 28 memorandum.

Il Discovery Required From Third Parties

57. Unlike AIX and Dynix, Linux code was developed in a somewhat unstructured
format. At a minimum, no single version control system, or group of version control systems
was inplemented to track the derivation and evolution of Linux and to screen out contributions
that may constitute copyright infnngement. Furthermore, IBM has stated that thousands of

programmers contributed code te Linux, and hundreds of Linux versions exist. Simply put, no

19

Case 2:03-cv-00294-DAK-BCW Document 476 Filed 07/05/2005 Page 20 of 24

road map exists that will aliow SCQ to trace the migration of UN{X code into Linux completely.
Thus, the discovery sought by SCO will permit SCO to identify major contributors to Linux so
as to focus and narrow discovery. Clearly, 1t 1s impossible to seck discovery from thousands of
contnbutors worldwide, and SCO does not intend 1o do so. Accordingly, SCO requires
discovery relating to third party contributions to Linux — thus demonstrating that IBM’s use of

Linux constitutes infringement — as follows:

¢ Determine what third parties IBM has partnered with to develop Linux and what
work those groups have done. Many of these arrangements are not in the public
domain, particularly as to the details of the partnering, such as which party makes
what contnibution, the motivation for the contribution, and the starting and ending
code versions that resulted from the partmership. This discovery will also help
SCO identify spectfic code authors, who can then be deposed.

s Take discovery on Linus Teorvalds, the purported creator of Linux, about the
contnbutors and contributions to Linux since its inception, and the maintenance of
any records about the development history of Linux. Mr. Torvalds is expected o
have detailed records of these contributors and their contributions, material that is
not publicly available. Further, Mr. Torvalds can answer specific questions as to
what each contributor intended, and where and how the contributor acquired or

developed the denved code.

e Take discovery ‘on maintainers of the kemels. Kemel maintainers ftake
responsibility for approving and including patches for Linux, and should have a
wealth of information on who has contributed what code to the varous Linux

kemels over the years.

 There are many contributors to the kemels, some who have significant
contributions to Linux code over the years. Some of these individuals, whose
names are publicly available, should be deposed to find out their sources for their

contributed code.

e Many corporations have made contributions to Linux, and SCO nceds to take
discovery on certain of these companies to determine the sources of their
contoibutions. Also, SCO needs to depose the programmers who work for these
companies and made the contributions to determine the sources of those
programmers’ code contiibutions. This discovery will show why the
contrnbutions were made and what features the contributions relate to, and will
allow SCO to trace back from the Linux code to UNIX.

Case 2:03-cv-00294-DAK-BCW Document 476 Filed 07/05/2005 Page 21 of 24

» SCO has identified some, but not all, independent authors of various portions of
Linux code. (See partial list at Exhibit P hereto.) Those authors should know the
sources of their code and should be able to provide information as to whether the
code they contributed to Linux was obtained from SCQO copyrighted code.

s Severa] private groups also made major contributions to Linux, so SCO should
also be permitted adequate time to identify and take discovery from these entities.

¢« Many organizations exist whose purpose is to track and report on changes to
Linux, and in many cases to collect documentation on Linux and distribute that
wnformation. However, such reporting is generally very sununary, and SCO needs
access to the more detailed information these organizations maintain. Such
organizations are also potential sources of infringement information.

¢ Licensees and former licensees of UNIX source code to see if these entities, their
employees, or former employees are contributing UNIX code to Linux.

58. IBM asserts that SCO has yet to set forth evidence that any Linux code infringes
any SCO copyright and that SCO cannot da so. To counter this assertion more fully, SCO needs
the discovery requested herein and the time to analyze it to find all instances of substantial
stmlanty.

59. This discovery will provide leads as to which portions of the Linux code have
copied poriions from UNLX. Linux 1s so extensive that an evaluation of each of its 8750 files
would be an enormous task. SCO needs some initial discovery in the area of third-party
contributions to Linux to focus SCO research and further discovery.

60. SCO has not yet undertaken to conduct this far-reaching third party discovery
because 1t is refevant only to IBM’s tenth counterclaim which was only recently filed and not to
SCO’s copyright infningement claim. As a user of Linux (which IBM contends is one of its
Linux activities), IBM copies Linux. Tbere.fore, IBM'’s use and copying of Linux necessarily

involves all of the source code contributed by others, as well as its own. Thus, SCO requires a

continuance to take this discovery.

21

" Case 2:03-cv-00294-DAK-BCW Document 476 Filed 07/05/2005 Page 22 of 24

1 declare under penalty of perjury that the fopcgoing 15 wue and correct.

N "/\ =TT
VNG
July __, 1004 i . _ Q/’\
Chris Scntag

" Case 2:03-cv-00294-DAK-BCW Document 476 Filed 07/05/2005 Page 23 of 24

CERTIFICATE OF SERVICE

Plaintiff, The SCO Group, hereby certifies that a true and corect copy . of

DECLARATION IN SUPPORT OF SCO'S MOTION FOR CONTINUANCE

PURSUANT TO RULE 56(f) was served on Defendant Intermnational Business Maclines
Corporation on the 9th day of July, 2004, as follows:
BY HAND DELIVERY:

Alan L. Sullivan, Esq.

Todd M. Shaughnessy, Esq.

Snell & Wilmer L.L P,

15 West South Temple, Ste. 1200
Satt Lake City, Utah 84101-1004

Evan R. Chesler, Esq.

Cravath, Swaine & Moore LLP
825 Eighth Avenue

New York, NY 10019

Donald J. Rosenberg, Esq.
1133 Westchester Avenue
White Plarns, New York 10604

" Case 2:03-cv-00294-DAK-BCW Document 476 Filed 07/05/2005 Page 24 of 24

CERTIFICATE OF SERVICE

Plainti ff/Counterclaim Defendant, The SCO Group, Inc., hereby certifies that a true
and correct copy of the foregoing was served on Defendant IBM on the 5™ day of July, 2005

by U.S. Mail to:

David Marriott, Esq.

CRAVATH SWAINE & MOORE LLP
Worldwide Plaza

825 Eighth Avenue

New York, NY 10019

Donald Rosenberg, Esq.
1133 Westchester Avenue
White Plains, NY 10604

Todd Shaughnessy, Esq.
SNELL & WILMER LLP

1200 Gateway Tower West

15 West South Temple

Salt Lake City, UT 84101-1004

Qﬂ&uﬁﬁv /f--Fwaeb

