Case 2:03-cv-00294-DAK-BCW Document 456 Filed 06/20/2005 Page 38 of 97

—eor

458 Interprocess Communication

When a process is done with a shared resource that is controlled by a semaphore, the
semaphoré value is incremented by 1. 1 any other processes are asleep, waiting for the
semaphote, they are awakened.

To implement semaphares correctly, the test of a semaphore’s value and the decre-
menting of this value must be an atomic operation. For this reason, semaphores are
normally implemented inside the kernel.

A common form of semaphore is called a binary semaphore. It controls a single
resource and its value is initialized to 1. In general, however, a semaphore can be ini-
tialized to any positive value, with the value indicating how many of units of the shared
resource are available for sharing.

System V semaphores are, unfortunately, more complicated than this. Three fea-
tures contribute to this unnecessary complication.

1. A semaphore is not just a single nonnegative value. Instead we have to definea
semaphore as a set of one or more semaphore values. When we create a
semaphore we specify the number of vatues in the set.

2. The creation of a semaphore (semget) is independent of its initialization
{semcrl). This is a fatal flaw, since we cannot atomically create a new
semaphore set and initialize all the values in the set.

3. Since all forms of System V IPC remain in existence even when no process is
using them, we have to worry about a program that terminates without releas-
ing the semaphores it has been allocated. The “undo” feature that we describe
later is supposed to handle this.

The kernel maintains a semid ds skructure for each semaphore,

struct semid ds {
struct ipc perm sem perm; /* see Section 14.6.2 */
struict sem “sem base; /* pLr to first semaphore in set */

ushort sem_nsens; /* ¥ of semaphores in set */
time t sem _otime; /* last-semop{)} time */
time t sem_ctime; /* last-change time */

bi

The sem_base pointer is worthless to a user process, since it points to memory in the
kernel. What it points to is an array of sem structures, containing sem_nsems elements,
one element in the array for each semaphore vatue in the set.

struct zem |
ushort semval: /% semaphore value, always >= 0 */ -
pig_t sempid; /* pid for last operation */
ushert semncnt; /* # processes awaiting semval > currval */
ushort semzcnt: J* ¥ processes awaiting semval = O */

!.

i

Figure 14.18 tists the system limits (Section 14.6.3) that affect semaphore sets.

