Case 2:03-cv-00294-DAK-BCW Document 456 Filed 06/20/2005 Page 54 of 97

I

Tool Interface Standard (TIS)

Executable and Linking Format (ELF)
Specification

Version 1.2

TIS Committee
May 1995

Case 2:03-cv-00294-DAK-BCW Document 456 Filed 06/20{2005 Page 55 of 97
— faid

The TIS Committee grants you a non-exciusive, worldwide, royalty-iree license to use the information disclosed in this Specification
to make your software TIS-compliant; no other license, express or implied, is granted or intended hereby,

The TIS Committee makes no warranty for the use of this standard.

THE TIS COMMITTEE SPECIFICALLY DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, AND ALL LIABILITY, INCLUD-
ING CONSEQUENTIAL AND OTHER INDIRECT DAMAGES, FOR THE USE OF THESE SPECIFICATION AND THE INFORMA-
TION CONTAINED IN IT, INCLUDING LIABILITY FOR INFRINGEMENT QOF ANY PROPRIETARY RIGHTS. THE TIS COMMITTEE
DOES NOT ASSUME ANY RESPONSIBILITY FOR ANY ERRORS THAT MAY APPEAR IN THE SPECIFICATION, NOR ANY
RESPONSIBILITY TO UPDATE THE INFORMATION CONTAINED IN THEM.

The TIS Committee retains the right to make changes to this specification at any time without notice.

IBM is a registered trademark and OS/2 is a trademark of International Business Machines Cerporation.

The Intel logo is a registered trademark and i386 and {ntel386 are trademarks of intel Corporation and may be used only to identify
Intel products.

Microsoft, Microsoft C, MS, MS-DOS, Windows, and XENIX are registered trademarks of Microsoft Corporation.
Phoenix is a registered trademark of Phcenix Technologies, Ltd.
UNIX is a registered trademark in the United States and other countries, licensed exclusively through X/Open Company Limited.

* Qther brands and names are the property of their respective owners,

Case 2:03-cv-00294-DAK-BCW Document 456 Filed 06/20/%2005 Page 56 of 97

3

Preface

This Executable and Linking Format Specification, Version 1.2, is the result of the work of the
Tool Interface Standards (TIS} Committee--an association of members of the microcomputer
industry formed to work toward standardization of the software interfaces visible to
development tools for 32-bit Intel Architecture operating environments. Such interfaces
include object module formats, executable file formats, and debug record information and
formats. - '

The goal of the committee is to help streamline the software development process throughout
the microcomputer industry, currently concentrating on 32-bit operating environments. To that
end, the committee has developed specifications--some for file formats that are portable across
leading industry operating systems, and others describing formats for 32-bit Windows”
operating systems. Originally distributed collectively as the TIS Portable Formats
Specifications Version 1.1, these specifications are now separated and distributed individually.

TIS Committee members include representatives from Absoft, Autodesk, Borland International
Corporation, IBM Corporation, Intel Corporation, Lahey, Lotus Corporation, MetaWare
Corporation, Microtec Research, Microsoft Corporation, Novell Corporation, The Santa Cruz
Operation, and WATCOM International Corporation. PharLap Software Incorporated and
Symantec Corporation also participated in the specification definition efforts.

This specification like the others in the TIS collection of specifications is based on existing,
proven formats in keeping with the TIS Committee’s goal to adopt, and when necessary, extend
existing standards rather than invent new ones.

About ELF: Executable and Linking Format

The Executable and Linking Format was originally developed and published by UNIX System
Laboratories (USL) as part of the Application Binary Interface (ABI). The Tool Interface
Standards committee (TIS) has selected the evolving ELF standard as a portable object file
format that works on 32-bit Intel Architecture environments for a variety of operating systems.

The ELF standard is intended to streamline software development by providing developers
with a set of binary interface definitions that extend across multiple operating environments.
This should reduce the number of different interface implementations, thereby reducing the
need for recoding and recompiling code.

About This Document

This document is intended for developers who are creating object or executable files on various
32-bit environment operating systems. In order to extend ELf into different operating systems,
the current ELF version 1.2 document has been reorganized based on operating system-specific
information. It is divided into the following three books:

* Book I: Executable and Linking Format, describes the object file format called ELF. This book
also contains an appendix that describes historical references and lists processor and operating
system reserved names and words,

* Book II: Processor Specific (Intel Achitecture), conveys hardware-specific ELF information,
such as Intel Architecture information.

* Book III: Operating System Specific, describes ELF information that is operating system
dependent, such as System V Release 4 information. This book also contains an appendix that
describes ELF information that is both operating system and processor dependent.

Case 2:03-cv-00294-DAK-BCW Document 456

Filed 06/20/2005

Page 57 of 97

Case 2:03-cv-00294-DAK-BCW Document 456 Filed 06/20/2005 Page 58 of 97

Contents

Preface

Book I: Executable and Linking Format (ELF)

1. Object Files

Introduction
FIE FOTIAL oottt re e e ree et r seeeeeeseaseesaetstantmnns s aan eaesanasabassabnseesaratemnnnnnn 1-1
I T =T L= TSR 1-4
ELF Identification ...ttt see e ee e e am e s s s e e e e 1-6
BB ONS v eee e tr sttt et e e e e e e e e e ae s e e e et e a e tanteenn s beae feeRaLAres s bbb besarntaeanannee
Special Sections
String Table :

SYMBOI TADIE ... e v rae s s e b e s ennn e
Symbol Values
Relocation

...

2. Program Loading and Dynamic Linking

[Fa1(£aTo [¥ T (o) 4 OO O T E O O PO PRO 2-1
Program HEBATETo et e s sreeeern e s e s v r e e sr e 2-2
Program LoAdiNG ... v e srenr e s e ns s e bbb 2-7
DyNammic LINKING ..ceviieecieie et ssncns s ar e cinm s b e n s e menen s 2-8
A. Reserved Names
INFOAUCHION ... oot e e et e ran e s ne e et s e m bR st e A-1
Special Sections NAMESvveceeiiin et ceiees i e srear s st A-2
Dynamic Section NAmMeSccc.ucevrirrri et aer et oo saane e s A-3
Pre-existing EXtensionsuvcierericere e r e e e e A4

Book II: Processor Specific (Intel Architecture)

1. Object Files

[(e o [T2 T o T USSR 1-1
L oY= Ta = O POU U OT T OO UUOUR PR 1-2
L oTot= T o SRR SR 1-3

Contents v

Case 2:03-cv-00294-DAK-BCW Document 456 Filed 06/20/2005 Page 59 of 97

Contents

Book lil: Operating System Specific
(UNIX System V Release 4)

1. Object Files

INEFOGUGHION ..t en s e s p e s e 1-1
LT (o] 1T S RO USSP R PR OO OR U PSP 1-2
SYMBOI TADIE ...t e e s e 1-5
2. Program Loading and Dynamic Linking
T TigoTe 1o 1[0 o H RO U U PR 2-7
Program HBAAENcvieiiiiieietr et ta st cere e e vee e sr e ee s e enras 2-8
DyNamic LINKING «..c...oo e e sssa s in s s ctns s e e e e e s s enneas 2412
3. Intel Architecture and System V Release 4 Dependencies
g1t 13T (1o o H USSP U YU A-1
LT o o O U R OO YO PO A-2
Symbol TADIE .t e [T, A-3
[RT=1 e Tor] (o] DSOS UUSOTUPRTU A4
A-7

Program Loading and Dynamic Linking..........cccirrmrnrinmrec e e

v

Case 2:03-cv-00294-DAI§-!3|CW Document 456 Filed 06/2707/42005

List of Figures

Book I: E

Figure 1-1.
Figure 1-2.
Figure 1-3.
Figure 1-4.
Figure 1-5.
Figure 1-6.
Figure 1-7.
Figure 1-8.
Figure 1-9.
Figure 1-10.
Figure 1-11.
Figure 1-12
Figure 1-13.
Figure 1-14.
Figure 1-15.
Figure 1-186.
Figure 1-17.
Figure 1-18.
Figure 1-19.
Figure 2-1.
Figure 2-2.
Figure 2-3.
Figure 2-4.
Figure A-1.
Figure A-2.

xecutable and Linking Format (ELF)

ObjectFile Format e
32-Bit Data Types i e e e
ELF Header e
e_ident [] identificationIndexes
Data Encoding ELFDATA 2L . ..ottt it en it niae e aaan
Data Encoding ELFDATAZMSBttt e it ina e en e
Special Section Indexes i i
Section Header i
Section Types, sh:_ type.ttt i et
Section Header Table Entry: Index 0
Section Attribute Flags, sh flagso vans

.sh_linkand sh_infolnterpretation_..............

Special Sections e
String Table Indexes
SymbolTable Entry i i e
Symbol Binding, ELF32 ST BINDuivniinninnnnennen.
Symbol Types, ELF32 ST TYPEo iiiean
Symbol Table Entry: index 0,
RelocationEntries i
Program Header e
Segment Types, p_type i s
Notelinformation i,
Example Note Segment oL
Special Sections e
Dynamic Array Tags, d_tagc.ciiiiiinnennnn.

Book ll: Processor Specific (Intel Architecture}

Figure 1-1.
Figure 1-2.
Figure 1-3.

Intel Identification,e_ident i,
Relocatable Fields i i i e e e e e eeaas
Relocation Types i i it i e

Page 60 of 97

Table of Contents

vii

Case 2:03-cv-00294-DAK-BCW ~ Document 456 Filed 06/270/3005

i

Book llI: Operating System Spe'cific
(UNIX System V Release 4)

Page 61 of 97

Figure 1-1. sh_linkand sh_infolnterpretation 1-2
Figure 1-2. Special Sections e 1-3
Figure 2-1. Segment TYPeS, P LYDE ..o n it e e e i 2-2
Figure 2-2. SegmentFlagBits, p flagsot 2-3
Figure 2-3. Segment Permissions i 2-4
Figure 2-4. TextSegment i iiiiiiiiiiinaea.. .20
Figure 2-5. Data Segmentot i i i 2-5
Figure 2-6. Dynamic Structure i e 2-8
Figure 2-7. Dynamic Array Tags, d_tagcciiiiiiiniiininnnn.. 2-g
Figure 2-8. SymbolHashTableo i, 2-14
Figure 2-9. Hashing Function i i 2-14
Figure 2-10. Initialization Ordering Example 2-16
Figure A-1, Special Sections i e e A-2
Figure A-2. Relocatable Fieids oot A4
Figure A-3. Relocation Types i i it eas A-5
Figure A-4. Executable File Example it A7
Figure A-5. Program Header Segments A-8
Figure A-6. Process Image SegmentsExample. A-Q
Figure A-7. Shared Object Segment Addresses Example A-10
Figure A-8. Global OffsetTable o i, A-11
Figure A-9. Absolute Procedure Linkage Table A-12
Figure A-10. Position-Independent Procedure Linkage Table_.... A-13
viii

Table of Contents

Case 2:03-cv-00294-DAK-BCW Document 456 Filed 06/20/2005 Page 62 of 97
R i

| Book I:
Executable and Linking Format (ELF)

Case 2:03-cv-00294-DAK-BCW Document 456 Filed 06/20/2005 Page 63 of 97

Case 2:03-cv-00294-DAK-BCW Document 456 Filed 06/20/2005 Page 64 of 97

Contents

Book |: Executable and Linking Format (ELF)

1 Object Files

IfroduUCtiON . .. L e e 1-1
File Format e e 1-1
Data Representation. o i 1-2
Character Representations. o i, 1-3
ELF Header. e e 14
ELF Identificationo e 1-6
BT et o o 1 A 1-9
Special Sections e 1-15
String Table e 1-18
Symbol Table. et 1-19
SymbolValues s 1-22
Relocation e e 1-23
2 Program Loading and Dynamic Linking
Infroduction i e 2-1
Program Header e 2-2
Note Sectiont i e e 2-5
ProgramLoading. ot i e e 2-7
Dynamic Linking 0 i i e 2-8
A Reserved Names
Ty 14roTa H et o OO A-1
Special Sections Names i e e A-2
Dynamic Section Names ittt it et e A-3
Pre-existing Extensions. e A-4

Table of Contents xi

Case 2:03-cv-00294-DAK-BCW Document 456 Filed 06/20/2005 Page 65 of 97

Contents

Xif Book |: Executable and Linking Format (ELF)

Case 2:03-cv-00294-DAK-BCW Document 456 Filed 06/20/2005 Page 66 of 97

Figures

1-1. Object File FOrmato i et e 1-1
1o, 2Bt Data TP . . ot e e 1-2
-3, ELF Header i e e e e e 1-4
1-4. e_ident (] Identification Indexes i e 1-8
1-5. Data ENcoding ELFDATAZLEE . o\ttt ittt e it e e et ettt et 1-8
1-6. Data Encodifg ELFDATAZMSEE . . . o\ it ittt vttt e ettt e et it et a e eee s 1-8
1-7. Special Section INdexXes e e 1-9
1-8. Section Header i e 1-10
1-0. Section TYPES, Sh_ EYDPE -ttt vttt e e et i e e e 1-11
1-10. Section Header Table Entry: Index 0 it i e ea 1-13
1-11. Section Attribute Flags, sh_flags . ..ot in it et et e e 1-14
1-12. sh link and sh_info Interpretation e 1-14
1-13. Spedial SectionS i e e s 1-15
1-14. String Table INGexXes o i e 1-18
1-15. Symbol Table Entry o e 1-19
1-16. Symbol Binding, ELF32_ST BINDtenunt et iie e ian et 1-20
1-17. Symbol Types, ELF32 ST TYPE . .ttt tatatne s teaaeinatsaranennen s ons 1-21
1-18. Symbol Table Entry: Index 0 e e 1-22
1-19. Relocation Entries e e 1-23
2-1. Program Header - o i 2-2
2-2. Begment TYPES, B By DB v ottt i e e e 2-3
2-3. Note Information i e e e e 2-5
2-4. Example Note Segment e 2-6
A-1. Special SECtONS ... o A-2
A-2. Dynamic Aray Tags, d_tag un it e e ey A-3

Table of Contents Xiii

Case 2:03-cv-00294-DAK-BCW Document 456 Filed 06/20/2005 Page 67 of 97

Case 2:03-cv-00294-DAK-BCW Document 456 Filed 06/20/2005 Page 68 of 97

i

Introduction

This chapter describes the object file format, called ELF (Executable and Linking Format).
There are three main types of object files.

* A relocatable file holds code and data suitable for linking with other object files to create an
executable or a shared object file.

¢ An executable file holds a program suitable for execution.

* A shared object file holds code and data suitable for linking in two contexts. First, the link
editor may process it with other relocatable and shared object files to create another object file.
Second, the dynamic linker combines it with an executable file and other shared objects to
create a process image.

Created by the assembler and link editor, object files are binary representations of programs
intended to execute directly on a processor. Programs that require other abstract machines are
excluded.

After the introductory material, this chapter focuses on the file format and how it pertains to
building programs. Chapter 2 also describes parts of the object file, concentrating on the
information necessary to execute a program.

File Format

Object files participate in program linking (building a program) and program execution
(running a program). For convenience and efficiency, the object file format provides parallel
views of a file's contents, reflecting the differing needs of these activities. Figure 1-1 shows
an object file's organization.

Figure 1-1. Object File Format

Linking View Execution View
ELF Header ELF Header
Program Header Table Program Header Table

optionat
Section 1 Segment 1
Section Segment 2
Seclion Header Table Section Header Table
optional

0s01980

OBJECT FILES 141

Case 2:03-cv-00294-DAK-BCW Document 456 Filed 06/20/2005 Page 69 of 97

I t

introduction

An ELF header resides at the beginning and holds a "road map" describing the file's
organization. Sections hold the bulk of object file information for the linking view: instructions,
data, symbol table, relocation information, and so on. Descriptions of special sections appear
later in this section. Chapter 2 also describes segments and the program execution view of the
file.

A program header table, if present, tells the system how to create a process image. Files used
to build a process image (execute a program) must have a program header table; relocatable

files do not need one. A section header table contains information describing the file's sections.
Every section has an entry in the table; each entry gives information such as the section name,
the section size, and so on. Files used during linking must have a section header table; other
object files may or may not have one.

NOTE. Although the figure shows the program header table immediately after the
ELF header, and the section header table following the sections, actual
files may differ. Moreover, sections and segments have no specified
order. Only the ELF header has a fixed position in the file.

Data Representation

As described here, the object file format supports various processors with 8-bit bytes and 32-bit
architectures. Nevertheless, it is intended to be extensible to larger (or smaller) architectures.
Object files therefore represent some control data with a machine-independent format, making
it possible to identify object files and interpret their contents in a common way. Remaining
data in an object file use the encoding of the target processor, regardless of the machine on
which the file was created.

Figure 1-2, 32-Bit Data Types

Name Size Alignment Purpose
E1£32_aAddr 4 4 Unsigned program address
Elf32_Half 2 2 Unsigned medium integer
E1f32 Off 4 4 Unsigned file offset
El£32_Sword 4 4 Signed large integer
E1£32 Word 4 4 Unsigned large integer
unsigned char 1 1 Unsigned small integer

All data structures that the object file format defines follow the "natural" size and alignment
guidelines for the relevant class. If necessary, data structures contain explicit padding to ensure
4-byte alignment for 4-byte objects, to force structure sizes to a multiple of 4, and so on. Data
also have suitable alignment from the beginning of the file. Thus, for example, a structure
containing an E1£32_Addr member will be aligned on a 4-byte boundary within the file.

For portability reasons, ELF uses no bit fields.

1-2 Book I: ELF (Executable and Linking Format)

Case 2:03-cv-00294-DAK-BCW Document 456 Filed 06/20/2005 Page 70 of 97
= ol

Introduction

Character Representations

This section describes the default ELF character representation and defines the standard
character set used for external files that should be portable among systems. Several external
file formats represent control information with characters. These single-byte characters use the
7-bit ASCII character set. In other words, when the ELF interface document mentions character
constants, such as; */” or *\n’ their numerical values should follow the 7-bit ASCII guidelines.
For the previous character constants, the single-byte values would be 47 and 10, respectively.

Character values outside the range of 0 to 127 may occupy one or more bytes, according to the
character encoding. Applications can control their own character sets, using different character
set extensions for different languages as appropriate. Although TIS-conformance does not
restrict the character sets, they generally should follow some simple guidelines.

* Character values between ¢ and 127 should correspond to the 7-bit ASCH code. That is,
character sets with encodings above 127 should include the 7-bit ASCII code as a subset.

* Multibyte character encodings with values above 127 should contain only bytes with values
outgide the range of 0 to 127. That is, a character set that uses more than one byte per character
should not "embed" a byte resembling a 7-bit ASCII character within a multibyte, non-ASCII
character.

* Multibyte characters should be self-identifying. That allows, for example, any multibyte
character to be inserted between any pair of multibyte characters, without changing the
characters’ interpretations.

These cautions are particularly relevant for multilingual applications.

NOTE. There are naming conventions for ELF constants that have processor
ranges specified. Names such as DT, PT _, for processor specific
extensions, incorporate the name of the processor: DT _M32 _SPECIAL,
Jor example. However, pre-existing processor extensions not using this
convention will be supported.

Pre-existing Extensions
DT_JMP_REL

OBJECT FILES 1-3

Case 2:03-cv-00294-[}AK-BCW Document 456

H

Filed 06/20/2005
£

¥

Page 71 of 97

ELF Header

Some object file control structures can grow, because the ELF header contains their actual sizes.
If the object file format changes, a program may encounter control structures that are larger or
smaller than expected. Programs might therefore ignore "extra" information. The treatment of
"missing" information depends on context and will be specified when and if extensions are

defined.

Figure 1-3. ELF Header

#define EI_NIDENT

typedef struct |
unsigned char
E1£32 Half
E1£32 Half
E1f32 Woxd
E1f32_ Addr
E1£32 Off
E1£32 Off
E1f32 Word
E1f32 Half
E1£32 Half
E1f32 Half
E1£32 Half
E1£32 Half
E1£32 Half
} E1£32_ Ehdr;

18

e ident [EI_NIDENT];
e _type;

e _machine;
e_version;
e_entry;

e phoff;
e_shoff;

e flags;
e_ehsize;

e phentsize;
e phnun;
e_shentsize;
e_shnum;
e_shstrndx;

1-4

e ident The initial bytes mark the file as an object file and provide machine-independent
data with which to decode and interpret the file's contents. Complete descriptions
appear below, in "ELF Identification."

e_type This member identifies the object file type.

Name Value Meaning
ET_NONE 0 | No file type
ET_REL 1 | Relocatable file
ET_EXEC 2 | Executable file
ET_DYN 3 | Shared object file
ET_CORE 4 | Corefile
ET_LOPROC oxf£00 Processor-specific
ET_HIPROC cxffff | Processor-specific

Book |: ELF (Executable and Linking Farmat)

Case 2:03-cv-00294-DAK-BCW Document 456 Filed 06/20/2005 Page 72 of 97

e_machine

e version

e _entry

e_phoff

e shoff

e flags

e _ehsize

OBJECT FILES

}

ELF Header

Although the core file contents are unspecified, type ET_CORE is reserved to mark
the file type. Values from ET_LOPROC through ET HIPROC (inclusive) are
reserved for processor-specific semantics. Qther values are reserved and will be
assigned to new object file types as necessary.

This member's value specifies the required architecture for an individual file.

Name Value Meaning
ET_HONE 9 No machine
EM_M32 1 AT&T WE 32100
EM_SPARC 2 SPARC
EM_386 3 Intel Architecture
EM_68K 4 Motorola 68000
EM_88K 5 Motorola 86000
EM 860 7 Intel 80860
EM_MIPS 8 MIPS RS3000 Big-Endian
EM_MIPS_RS4_BE 10 MIPS RS4000 Big-Endian
RESERVED 11-1s Reserved for future use

Qther values are reserved and will be assigned to new machines as necessary.
Processor-specific ELF names use the machine name to distinguish them. For
example, the flags mentioned below use the prefix EF_; a flag named WIDGET for
the EM_XY?Z machine would be called EF_XYZ WIDGET.

This member identifies the object file version.

Name Value Meaning
EV_NONE 0 Invalid versionn
EV_CURRENT 1 Current version

The value 1 signifies the original file format; extensions will create new versions
with higher numbers. The value of EV_CURRENT, though given as 1 above, will
change as necessary to reflect the current version number.

This member gives the virtual address to which the system first transfers control,
thus starting the process. If the file has no associated entry point, this member holds
ZEr0.

This member holds the program header table's file offset in bytes. If the file has no
program header table, this member holds zero.

This member holds the section header table's file offset in bytes. If the file has no
section header table, this member holds zero,

This member holds processor-specific flags associated with the file. Flag names
take the form EF_machine flag.

This member holds the ELF header’s size in bytes.

Case 2:03-cv-00294-DAK-BCW Document 456 Filed 06/20/2005 Page 73 of 97
T

ELF Header

e phnentsize This member holds the size in bytes of one entry in the file's program header table;
all entries are the same size.

e phnum This member holds the number of entries in the program header table. Thus the
product of e_phentsize and e_phnum gives the table's size in bytes. If a file
has no program header table, e phnum holds the value zero.

e_shentsize This member holds a section header's size in bytes. A section header is one entry
in the section header table; all entries are the same size.

e shnum This member holds the number of entries in the section header table. Thus the
product of e_shentsize and e_shnum gives the section header table's size in
bytes. If a file has no section header table, e shnum holds the value zero.

e_shstrndx This member holds the section header table index of the entry associated with the
section name string table. If the file has no section name string table, this member
holds the value SHEN_UNDEF. See "Sections” and "String Table" below for more
information.

ELF ldentification

As mentioned above, ELF provides an object file framework to support multiple processors,
multiple data encodings, and multiple classes of machines. To support this object file family,
the initial bytes of the file specify how to interpret the file, independent of the processor on
which the inquiry is made and independent of the file's remaining contents.

The initial bytes ¢f an ELF header (and an object file) correspond to the e_ident member.

Figure 1-4. ¢_ident (] Identification Indexes

Name Vatue Purpose
EI_MAGO 0 : File identification
EI_MAGL 1 File identification
EI_MAGZ 2 File identification
EI_MAG3 3 File identification
EI_CLASS 4 File class
EI_DATA 5 Data encoding
EI_VERSION § File version
BEI PpAD 7 Start of padding bytes
EI NIDENT 16 Size of e_ident {]

1-6 Book it ELF (Executable and Linking Format)

Case 2:03-cv-00294-DAK-BCW Document 456 Filed 06/20/2005 Page 74 of 97
J

}

ELF Header

These indexes access bytes that hold the following values.

EI_MAGO to EI_MAG3 A file's first 4 bytes hold a "magic number," identifying the file as an ELF

EI_CLASS

EI_DATA

EI_VERSION

EI_PAD

OBJECT FILES

object file.
Name Value ~ Meaning
TELFMAGD Ux7E e_identiEl_MAGD}
ELFMAG1 TEf e_ident[El_MAG1]
ELFMAGZ L e_ldent[El_MAG2]
ELFMAG3 ‘P! e_ident[El_MAG3J)]

The next byte, e_ident {EI_CLASS], identifies the file's class, or

capacity.

Name Value Meaning
ELFCLASSNONE 0 Invalid class
ELFCLASS32 1 32-bit objects
ELFCLASS64 2 B4-bit objects

The file formatis designed to be portable among machines of various sizes, without
imposing the sizes of the largest machine on the smailest. Class ELFCLASS32
supports machines with files and virtual address spaces up to 4 gigabytes; it uses
the basic types defined above,

Class ELFCLASS64 is incomplete and refers to the 64-bit architectures. Its
appearance here shows how the object file may change. Other classes will be defined
as necessary, with different basic types and sizes for object file data.

Byte e_ident [EI_DATA]specifies the data encoding of the
processor-specific data in the object file. The following encodings arc
currently defined.

Name Vaiue Meaning
ELFDATANCNE 0 Invalid data encoding
ELFDATA2LSB 1 See below
ELFDATA2MSB 2 See below

More information on these encodings appears below. Other values are
reserved and will be assigned to new encodings as necessary.

Bytee ident [ET_VERSION] specifiesthe ELF header version number.
Currently, this value must be EV_CURRENT, as explained above for
e _version.

This value marks the beginning of the unused bytes ine_ident, These
bytes are reserved and set to zero; programs that read object files should
ignore them. The value of EI_PAD will change in the future if currently
unused bytes are given meanings.

|

Case 2:03-cv-00294-DAK-BCW Document 456 Filed 06/20/2005 Page 75 of 97
j

ELF Header

A file's data encoding specifies how to interpret the basic objects in a file. As described above,
class ELFCLASS32 filesuse objects that occupy 1, 2, and 4 bytes. Under the defined encodings,
objects are represented as shown below. Byte numbers appeat in the upper left corners.

Encoding ELFDATA2LSE specifies 2's complement values, with the least significant byte
occupying the lowest address.

Figure 1-5. Data Encoding ELFDATA2LSB

0
0x01 o
a 1
0x0102 02 01
1] 1 2 3
0x01020304 04 03 02 01

Cs01 08t

Encoding ELFDATA2MSB specifies 2's complement values, with the most significant byte
occupying the lowest address.

Figure 1-6. Data Encoding sLrpaTa2MsB

0
Ox01 o1
0 1
0x0102 01 02
0 1 2 3
0x01020304 o1 02 03 04

OsD1sez

1-8 Book |: ELF (Executable and Linking Formait)

Case 2:03-cv-00294-DAK-BCW Document 456 Filed 06/20/2005 Page 76 of 97
- S

Sections

An object file's section header table lets one locate all the file's sections. The section header
table is an array of E1£32_Shdr structures as described below. A section header table index
is a subscript into this array. The ELF header's e_shoff member gives the byte offset from
the beginning of the file to the section header table; e_shnum tells how many entries the
section header table contains; e_shentsize gives the size in bytes of each entry.

Some section header table indexes are reserved; an object file will not have sections for these
special indexes.

Figure 1-7. Special Section Indexes

Name Value

SHN_UNDEF 0

SHN_LORESERVE oxE£00
SHN_LOPROC 0x££00
SHNM_HIPROC ox£flf
SHN_ABS OxEE£L
SHN_COMMON oxfffz
SHN_HIRESERVE oxfEEf

SHM_UMDEF This value marks an undefined, missing, irrelevant, or otherwise

meaningless section reference. For example, a symbol "defined" relative to
section number SHN_UNDEF is an undefined symbol.

NOTE. Although index 0 is reserved as the undefined value, the section header
table contains an entry for index 0. That is, if the e_shnum member of
the ELF header says a file has 6 entries in the section header table, they

have the indexes 0 through 5. The contents of the initial entry are specified
later in this section.

SHN_LORESERVE This value specifies the lower bound of the range of reserved indexes,

SHN_LOPROC through Values inthis inclusive range are reserved for processor-specific semantics.

SHN_HIPROC

SHN_ABS This value specifies absolute values for the corresponding reference. For
example, symbeols defined relative to section number SHN_ABS have
absolute vahies and are not affected by relocation.

SHN__COMMON Symbols defined relative to this section are common symbols, such as

FORTRAN COMMON or unallocated C external variables.

OBJECT FILES 1-9

Case 2:03-cv-00294-DAK-BCW Document 456 Filed 06/20/2005 Page 77 of 97
j s

Sections

SHN_EIRESERVE This value specifies the upper bound of the range of reserved indexes. The
system reserves indexes between SEN LORESERVE and
SHN HIRESERVE,inclusive; the values do not reference the section header
table. That is, the section header table does not contain entries for the
reserved indexes.

Sections contain all information in an object file, except the ELF header, the program header
table, and the section header table. Moreover, object files' sections satisfy several conditions,

* Every section in an object file has exactly one section header describing it. Section headers may
exist that do not have a section.

* Each section occupies one contiguous (possibly empty) sequence of bytes within a file.
* Sections in a file may not overlap. No byte in a file resides in more than one section.

* An object file may have inactive space. The various headers and the sections might not "cover"
every byte in an object file. The contents of the inactive data are unspecified.

A section header has the following structure.

Figure 1-8. Section Header

typedef struet {
Elf32 Word sh_name;
E1f32 Word sh_type;
E1f32 Worxd sh_flags;
E1f32 Addr sh_addr;
E1f32 Off sh offset;
ELf32 Word sh size;
Elf32 Word sh_link;
E1f32 Word sh_info;
E1lf32 Word sh _addralign;
E1f32 Word sh_entsize;

} E1£32 Shdr;

sh_name This member specifies the name of the section, Its value is an index into
the section header string table section [see "String Table" below], giving
the location of a null-terminated string.

sh_type This member categorizes the section's contents and semantics. Section
types and their descriptions appear below.

sh flags Sections support 1-bit flags that describe miscellaneous attributes. Flag
definitions appear below.

sh_addr If the section will appear in the memory image of a process, this member
gives the address at which the section’s first byte should reside. Otherwise,
the member contains 0.

1-10 Book i: ELF {Executable and Linking Format)

Case 2:03-cv-00294-DAK-BCW Document 456 Filed 06/20/2005 Page 78 of 97

i

Sections

sh offset This member’s vatue gives the byte offset from the beginning of the file to
the first byte in the section. One section type, SHT NOBITS described
below, occupies no space in the file, and its sh_offset member locates
the conceptuat placement in the file,

gsh_size This member gives the section's size in bytes. Unless the section type is
' SHT_NOBITS, the section occupies sh_size bytesinthe file. A section
of type SHT NOBITS may have a non-zero size, but it occupies no space
in the file.

gh link This member holds a section header table index link, whose interpretation
depends on the section type. A table below describes the values.

sh_info This member holds extra information, whose interpretation depends on the
section type. A table below describes the values.

sh addralign Some sections have address alignment constraints. For example, ifa section
holds a doubleword, the system must ensure doubleword alignment for the
entire section. That is, the value of sh_addr must be congruent to 0,
modulo the value of sh_addralign. Currently, only 0 and positive
integral powers of two are allowed. Values 0 and 1 mean the section has no
alignment constraints,

sh_entsize Some sections hold a table of fixed-size entries, such as a symbol table, For
such a section, this member gives the size in bytes of each entry. The
member contains () if the section does not hold a table of fixed-size entries,

A section header's sh_type member specifies the section's semantics.

Figure 1-9. Section Types, sh_type

Name Value

SHT NULL 0
SHT_PROGBITS 1

SHT_ SYMTAR 2
SHT_STRTAB 3

SHT_RELA 4

SHT_HASH 5
SHT_DYNAMIC 6

SHT_NOTE 7
SHT_NOBITS 8

SHT_REL 3

SHT SHLIB 10

SHT DYNSYM 11
SHT_LOPROC 0x70000000
SHT HIPROQC OxTEEEEELE
SHT_LOUSER cxgo0dco0co
SHT_HIUSER OXEEEFEEEE

OBJECT FILES 1-1

Case 2:03-cv-00294-DAK-BCW Document 456 Filed 06/20/2005 Page 79 of 97
i ;

Sections

SHT NULL

SHT PROGBITS

SHT SYMTAB and
SHT DYNSYM

SHT_STRTAB

SHT_RELA

SHT_HASH
SHT_DYNAMIC
SHT NOTE

$HT_NOBITS

SHT REL

SHT _SHLIB

This value marks the section header as inactive; it does not have an
associated section. Other members of the section header have undefined
values.

The section holds information defined by the program, whose format and
meaning are determined solely by the program.

These sections hold a symbol table.

The section holds a string table.

The section holds relocation entries with explicit addends, such as type
E1£32_Rela for the 32-bit class of object files. An object file may have
multiple relocation sections. See "Relocation” below for details.

The section holds a symbol hash table.
The section holds information for dynamic linking,
This section holds information that marks the file in some way.

A section of this type occupies no space in the file but otherwise resembles
SHT_PROGBITS. Although this section contains no bytes, the
sh_offset member contains the conceptual file offset.

The section holds relocation entries without explicit addends, such as type
E1£32_Rel for the 32-bit class of object files. An object file may have
multiple relocation sections. See "Relocation” below for details.

This section type is reserved but has unspecified semantics.

Book I: ELF (Executable and Linking Format)

Case 2:03-cv-00294-DAK-BCW Document 456 Filed 06/20/2005 Page 80 of 97

} .

Sections

SHT LOPROC through Valuesin this inclusive range are reserved for processor-specific semantics.

SHT_HIPROC

SHT_LOUSER This value specifies the lower bound of the range of indexes reserved for
application programs.

SHT HIUSER This value specifies the upper bound of the range of indexes reserved for

application programs. Section types between SHT LOUSER and
SHT HIUSER may be used by the application, without conflicting with
current or future system-defined section types.

Other section type values are reserved. As mentioned before, the section header for index 0
(SHN UNDEF) exists, even though the index marks undefined section references. This entry
holds the following.

Figure 1-10. Section Header Table Entry: Index 0

Name Value Note

sh_name o No name
sh_type SHT NULL Inactive
sh_flags] No flags

sh_addr . o No address

sh _offset 0 No file offset
sh_size 0 No size

sh_link SHN_UNDEF No link information
sh_info] No auxiliary information
sh_addralign 0 No alignment
sh_entsize] No entries

A section header's sh_flags member holds 1-bit flags that describe the section's attributes,
Defined values appear below; other values are reserved.

Figure 1-11. Section Attribute Flags, sh_flags

Name Value
SHF_WRITE 0x1
SHF ALLOC ox2
SHF_EXECINSTR 0x4
SKEF_MASKPROC 0x£0000000

If a flag bit is set in sk_flags, the attribute is "on" for the section. Otherwise, the attribute
is "off" or does not apply. Undefined attributes are set to zero.

SHF _WRITE The section contains data that should be writable during process execution.

CBJECT FILES 1-13

Case 2:03-cv-00294-D

Sections

SEF _ALLOC

AK-BCW Document 456 Filed 06/20/2005 Page 81 of 97
I]

The section occupies memory during process execution. Some control

sections do not reside in the memory image of an object file; this attribute
is off for those sections.

SHF_EXECINSTR

SHF_MASKPROC -

The section contains executable machine instructions.

All bits included in this mask are reserved for processor-specific semantics.

Two members in the section header, sh_link and sh_info, hoeld special information,

depending on section type.

Figure 1-12. sn_1ink and sh_info Interpretation

sh_type sh link sh_info

SHT_DYNAMIC The section header index 0

of the string table used by

entries in the section.
SHT_HASH The section header index 0]

of the symbol table to

which the hash table

applies.
SHT_REL The section header index The section header index
SHT_RELA of the associated symbol of the section to which the

table. relocation applies.
SHT_SYMTAB This information is This information is
SHT_DYNSYM operating system specific. | operating system specific.
other SHN_UNDEF 0

Special Sections

Various sections in ELF are pre-defined and hold program and control information. These
Sections are used by the operating system and have different types and attributes for different
operating systems.

Executable files are created from individual object files and libraries through the linking
process. The linker resolves the references (including subroutines and data references) among
the different object files, adjusts the absolute references in the object files, and relocates
instructions. The linking and loading processes, which are described in Chapter 2, require
information defined in the object files and store this information in specific sections such as
.dynamic.

Each operating system supports a set of linking models which fall into two categories:

Static A set of object files, system libraries and library archives are statically
bound, references are resolved, and an executable file is created that is
completely self contained.

Dynamic A set of object files, libraries, system shared resources and other shared

libraries are linked together to create the executable. When this executable
is loaded, other shared resources and dynamic libraries must be made
available in the system for the program to run successfully.

1-14 Book I: ELF {Executable and Linking Format)

Case 2:03-cv-00294-D,§K_-BCW Document 456

b

Filed 06/20/2005

Page 82 of 97

}

Sections

The general method used to resolve references at execution time for a
dynamically linked executable file is described in the linkage model used
by the operating system, and the actual implementation of this linkage
mode! will contain processor-specific components,

There are also sections that support debugging, such as . debug and . line, and program
control, including.bss, .data, .datal, .rodata, and .rodatal.

Figure 1-13. Special Sections

SHT_ PROGBITS

Name Type Attributes
.bss SHT_NOBITS SHF_ALLOC+S$HF_WRITE
. comment. SHT PROGBITS none
.data SHT_PROGBITS SHF_ALLCC + SHF_WRITE
.datal SHT_PROGBITS SHF ALLQOC + SHF_WRITE
.debug SHT PROGBITS none
.dynamic SHT DYNAMIC see below
-hash SHT HASH SHF ALLOC
.line SHT PROGBITS none
.note SHT_NOTE none
.rodata SHT_PROGBITS SHF_ALLOC
.rodatal SHT_PROGBITS SHF_ALLOC
.shstrtab SHT_STRTAB none
.strtab SHT_ STRTAB see below
.symtab SHT_SYMTAB see below
.text

SHF_ALLOC + SHF EXECINSTR

.bss

.comment

.dataand .datal

.debug

.dynamic

.hash

OBJECT FILES

This section holds uninitialized data that coniribute to the program's
memory image. By definition, the system initializes the data with zeros
when the program begins to run. The section occupies no file space, as
indicated by the section type, SHT NOBITS.

This section holds version control information.

These sections hold initialized data that contribute to the program's memory
image.

This section holds information for symbolic debugging. The contents are
unspecified. All section names with the prefix . debug are reserved for

future use.

This section holds dynamic linking information and has attributes such as
SHF_ALLOC and SHF_WRITE. Whether the SHF_WRITE bit is set is
determined by the operating system and processor.

This section holds a symbol hash table.

Case 2:03-cv-00294-DAK-BCW Document 456 Filed 06/20/2005 Page 83 of 97

Sections

.line

.noce

.rodata and
.rodatal

.shstrtab

.strtab

-symtab

.Lext

}

This section holds line number information for symbolic debugging, which
describes the correspondence between the source program and the machine
code. The contents are unspecified.

This section holds information in the format that is described in the "Note
Section" in Chapter 2.

These sections hold read-only data that typically contribute to a
non-writable segment in the process image. See "Program Header" in
Chapter 2 for more information.

This section holds section names.

This section holds strings, most commonly the strings that represent the names
associated with symbol table entries. If a file has a loadable segment that
includes the symbol string table, the section's attributes will include the

SHF ALLOC bit; otherwise, that bit will be off.

This section holds a symbol table, as "Symbol Table" in this chapter
describes. If a file has a loadable segment that inciudes the symbol table,
the section's attributes will include the SHF ALLOC bit; otherwise, that bit
will be off.

This section holds the "text,” or executable instructions, of a program.

Section names with a dot (.) prefix are reserved for the system, although applications may use
these sections if their existing meanings are satisfactory. Applications may use names without
the prefix to avoid conflicts with system sections. The object file format lets one define sections
not in the list above. An object file may have more than one section with the same name.

Book I: ELF (Executable and Linking Format)

Case 2:03-cv-00294-D_AL<-BCW Document 456

T

Filed 06/20/2005 Page 84 of 97
)

String Table

This section describes the default string table. String table sections hold null-terminated
character sequences, commonly called strings. The object file uses these strings to represent
symbol and section names. One references a string as an index into the string table section.
The first byte, which is index zero, is defined to hold a null character. Likewise, 2 string table's
last byte is defined to hold & null character, ensuring null termination for all strings. A string
whose index is zero specifies either no name or a null name, depending on the context. An
empty string table section is permitted; its section header's sh_size member would contain

zero, Non-zero indexes are invalid for an empty string table,

A section header's sh_name member holds an index into the section header string table section,
as designated by the e_shstrndx member of the ELF header. The following figures show a
string table with 25 bytes and the strings associated with various indexes.

Index +0 +1 +2 +3 +4 +5 +6 +7 +8 +9
0 \0 n 8 m e \0 v
10 i a b | e \0 a
20 \0 \0 X x \0

Figure 1-14. String Table Indexes
index String
0 none
1 name.
7 Variable
11 able
16 able
24 null string

As the example shows, a string table index may refer to any byte in the section. A string may
appear more than once; references to substrings may exist; and a single string may be referenced

muitiple times. Unreferenced strings also are allowed.

OBJECT FILES

Case 2:03-cv-00294-DAK-BCW Document 456 Filed 06/20/2005 Page 85 of 97
= 24

Symbol Table

An object file's symbol table holds information needed to locate and relocate a program's
symbolic definitions and references. A symbol table index is a subscript into this array. Index
0 both designates the first entry in the table and serves as the undefined symbol index. The
contents of the initial entry are specified later in this section.

Name Value

STN_UNDEF 0

A symbol table entry has the following format.

Figure 1-15. Symbol Table Entry

typedef struct |
E1f32 Word St _name;
E1f32_ addr st_value;
E1£32_Word st_silze;
unsigned char st _info;
unsigned char st _other;
BE1f32_Half st _shndx;

) E1£32_Sym;

st_name This member holds an index into the object file's symbol string table, which holds
the character representations of the syrmbol names.

st_value This member gives the value of the associated symbol. Depending on the context,
this may be an absolute value, an address, and so on; details appear below.

st_size Many symbols have associated sizes. For example, a data object's size is the number
of bytes contained in the object. This member holds 0 if the symbol has no size or
an unknown size.

st_info This member specifies the symbol's type and binding attributes. A list of the values
and meanings appears below. The following code shows how to manipulate the
values,

#define ELF32 ST BIND(i) {(i)>>4)
#define ELF32 ST TYPE(i) ((i) &0xf)
#define ELF32 ST INFO{b,t) ({((b)<<4)+((t)&0xf))

1-18 Baok I: ELF {Executable and Linking Format)

Case 2:03-cv-00294-DAK-BCW Document 456 Filed 06/20/2005 Page 86 of 97
o }

Symbol Table

st_other This member currently holds 0 and has no defined meaning.

gt shndx Every symbol table entry is "defined" in relation to some section, this member holds
the relevant section header table index. As Figure 1-7 and the related text describe,
some section indexes indicate special meanings.

A symbol's binding determines the linkage visibility and behavior.

Figure 1-16. Symbol Binding, eLra2 st BIND

Name Value
STB_LOCAL 0
STE_GLOBAL 1
STB_WEAK 2
STB_LOPROC 13
STB_HIPROC i5
STB_LOCAL Local symbols are not visible outside the object file containing their

detinition. Local symbols of the same name may exist in multiple files
without interfering with each other.

STB GLOBAL Global symbols are visible to all object files being combined. One file's
definition of a global symbol will satisfy another file's undefined reference
to the same global symbol.

STE_WEAK Weak symbols resemble global symbols, but their definitions have lower
precedence.

STB_LOPRQC through Values in this inclusive range are reserved for processor-specific semantics.
STB_HIPROC

In each symbo! table, all symbols with STB_LOCAL binding precede the weak and global
symbols. A symbol's type provides a general :lassification for the associated entity.

OBJECT FILES 1-19

Case 2:03-cv-00294-DAK-BCW Document 456 Filed 06/20/2005 Page 87 of 97

i i

Symbol Table

Figure 1-17. Symbol Types, ELF32_sT TYPE

1-20

Name Value
~ STT_NOTYPE 0
STT_CBJECT 1
STT_FUNC 2
STT_SECTION 3
STT FILE 4
STT_LOFROC 13
STT HIPROC 15
STT NOTYPE The symbol's type is not specified.
STT_ OBJECT The symbol is associated with a data object, such as a variable, an array,
and so on.
STT_FUNC The symbol is associated with a function or other executable code.
STT SECTION The symbol is associated with a section. Symbol table entries of this type

exist primarily for relocation and normally have STE_LCCAL binding.

STT LOPROQC through Values in this inclusive range are reserved for processor-specific semantics.

STT_HIPROC If a symbol's value refers to a specific location within a section, its section
index member, st_shndx, holds an index into the section header table.
As the section moves during relocation, the symbol's value changes as well,
and references to the symbol continue to "point" to the same location in the
program. Some special section index values give other semantics.

STT FILE A file symbol has STB_LOCAL binding, its section index is SHN_ABS, and
it precedes the other STB_LOCAL symbols for the file, if it is present.

The symbols in ELF object files convey specific information to the linker and loader. See the
operating system sections for a description of the actual linking model used in the system.

SHN ABS The symbol has an absolute value that will not change because of relocation.

SHN_COMMON The symbol labels a common block that has not yet been allocated. The
symbol's value gives alignment constraints, similar to a section’s
sh_addralign member. That is, the link editor will allocate the storage
for the symbol at an address that is a muitiple of st value. The symbol’s
size tells how many bytes are required.

SHN UNDEF This section table index means the symbol is undefined. When the link
editor combines this object file with another that defines the indicated
symbol, this fite's references to the symbal will be linked to the actual
definition.

Book 1 ELF {Executable and Linking Format)

Case 2:03-cv-00294-DAK-BCW Document 456 Filed 06/20/2005 Page 88 of 97
T o

Symbol Table

As mentioned above, the symbol table entry for index 0 (STN_UNDEF) is reserved; it holds the
following.

Figure 1-18. Symbol Table Entry: Index

Name Value Note
st_name 0 No name
st_wvalue 0 Zero value
st_size 0 No size
st_info 0 No type, local binding
st_other 2
st_shndx SHN_UNDEF No section

Symbol Values

Symbol table entries for different object file types have slightly different interpretations for
the st_value member.

* Inrelocatable files, st_value holds alignment constraints for a symbol whose section index
is SHN_COMMON. '

* Inrelocatable files, st_wvalue holds a section offset for a defined symbol. That is,
st_value is an offset from the beginning of the section that st_shndx identifies.

* In executable and shared object files, st_value holds a virtual address. To make these files'
symbols more useful for the dynamic linker, the section offset (file interpretation) gives way to
a virtual address (memory interpretation) for which the section number is irrelevant.

Although the symbol table values have similar meanings. for different object files, the data
allow efficient access by the appropriate programs.

QOBJECT FILES 1-21

Case 2:03-cv-00294-DAK-BCW Document 456 Filed 06/20/2005 Page 89 of 97

} }

Relocation

Relocation is the process of connecting symbolic references with symbolic definitions. For
example, when a program calls a function, the associated call instruction must transfer control
to the proper destination address at execution. In other words, relocatable files must have
information that describes how to modify their section contents, thus allowing executable and
shared object files to hold the right information for a process's program image. Relocation
entries are these data.

Figure 1-19, Relocation Entries

typedef struct {

E1£f32 Addr r offset;
E1f32 Word r_info;
} E1f32 Rel;

typedef struct {
El£32_Addr r_offset;
E1f32 Word r_info;
E1£32 Sword r_addend;
} E1f32 Rela;

r offset This member gives the location at which to apply the relocation action. For
a relocatable file, the value is the byte offset from the beginning of the
section to the storage unit affected by the relocation, For an executable file
or a shared object, the value is the virtual address of the storage unit affected
by the relocation.

r_info This member gives both the symbol table index with respect to which the
refocation must be made, and the type of relocation to apply. For example,
a call instruction's relocation entry would hold the symbol table index of
the function being called. If the index is STN_ UNDEF, the undefined symbol
index, the relocation uses 0 as the "symbol value," Relocation types are
processor-specific; descriptions of their behavior appear in the processor
supplement. When the text in the processor supplement refers to a
relocation entry's relocation type or symbol table index, it means the result
of applying ELF32_R_TYPE or ELF32_ R _SYM, respectively, to the
entry's r_info member.

#define ELF32_R SYM{i) ((1)>>8)
#define ELF32 R TYPE(i) ({(unsigned char) {i})
#define ELF32 R INFO(s,t) ({((s)<<8)+(unsigned char) {t})

1-22

r_addend This member specifies a constant addend used to compute the value to be
stored into the relocatable field.

Book |: ELF {(Executable and Linking Format)

Case 2:03-cv-00294-DAK-BCW Document 456 Filed 06/20/2005 Page 90 of 97

})

Relocation

As shown above, only E1£32 Rela entries contain an explicit addend. Entries of type
EL£32_Relstoreanimplicit addend in the location to be modified. Depending on the processor
architecture, one form or the other might be necessary or more convenient. Consequently, an
implementation for a particular machine may use one form exclusively or either form depending
on context.

A relocation section references two other sections: a symbol table and a section to modify. The
section header's sh _infoand sh_linkmembers, described in "Sections" above, specify these
relationships. Relocation entries for different object files have slightly different interpretations
for the r_offset member.

* Inrelocatable files, r_of fset holds a section offset. That is, the relocation section itself
describes how to modify another section in the file; relocation offsets designate a storage unit
within the second section.

* 1Inexecutable and shared object files, r_offset holds a virtual address. To make these files'
relocation entries more useful for the dynamic linker, the section offset (file interpretation)
gives way to a virtual address (memory interpretation).

Although the interpretation of r offset changes for different object files to allow efficient
access by the relevant programs, the relocation types' meanings stay the same.

1-23 Book I: ELF (Executable and Linking Formait)

Case 2:03-cv-00294-DAK-BCW Document 456 Filed 06/20/2005 Page 91 of 97

Case 2:03-cv-00294-DAK-BCW Document 456 Filed 06/20/2005 Page 92 of 97

i }

Introduction

This chapter describes the object file information and system actions that create running
programs. Executable and shared object files statically represent programs. To execute such
programs, the system uses the files to create dynamic program representations, or process
images. A process image has segments that hold its text, data, stack, and so on. This section
describes the program header and complements Chapter 1, by describing object file structures
that relate directly to program execution. The primary data structure, a program header table,
locates segment images within the file and contains other information necessary to create the
memory image for the program.

Given an object file, the system must load it into memory for the program to run. After the
system loads the program, it must complete the process image by resolving symbolic references
among the object files that compose the process.

PROGRAM LOADING AND DYNAMIC LINKING 2-1

Case 2:03-cv-00294-DAK-BCW Document 456 Filed 0%}0/2005 Page 93 of 97

|

Program Header

An executable or shared object file's program header table is an array of structures, each
describing a segment or other information the system needs to prepare the program for
execution. An object file segment contains one or more sections. Program headers are
meaningful only for executable and shared object files. A file specifies its own program header
size with the ELF header's e phentsize and e phnum members [see "ELF Header" in
Chapter 1].

Figure 2-1. Program Header

typedef struct |
E1lf32 Word r_type;
E1f32 Off p_offset;
E1f32 Addr p_vaddr;
E1f32 Addr p_paddr;
Elf32 Word p_filesz;
Elf32 Word P memsz;
E1f32 Word p_flags;
Elf32 Word p_align;

} E1£32 Phdr;

p_type This member tells what kind of segment this array element describes or how to
interpret the array element's information. Type values and their meanings appear
below.

p_offset This member gives the offset from the beginning of the file at which the first byte
of the segment resides.

p_vaddr This member gives the virtual address at which the first byte of the segment resides
in memory. :

p_paddr On systems for which physical addressing is relevant, this member is reserved for
the segment's physical address. This member requires operating system specific
information, which is described in the appendix at the end of Book II1.

p_filesz This member gives the number of bytes in the file image of the segment; it may be

Zero.

p_hemsz This member gives the number of bytes in the memory image of the segment; it
may be zero.

p_flags This member gives flags relevant to the segment. Defined flag values appear below.

p_align Loadable process segments must have congruent values for p_vaddr and

p_offset, modutlo the page size. This member gives the value to which the
segments are aligned in memory and in the file. Values 0 and 1 mean that no
alignment is required. Otherwise, p_align should be a positive, integral power of
2, and p_addr should equal p_offset, modulop_align.

2-2 Bock I: ELF {Executable and Linking Format)

Case 2:03-cv-00294-DAK-BCW Document 456

slleh Filed 06/20/2005 Page 94 of 97

: }

Program Header

Some entries describe process segments; others give supplementary information and do not
contribute to the process image.

Figure 2.2. Segment Types,p tvpe

Name Value
PT_NULL 0
PT_LOAD 1
PT_DYNAMIC 2
PT_INTERP 3
PT_NOTE 4
PT_SHLIB 5
PT_DHDR 6
PT_LOPROC 0x70000000
PT_HIPROC OxX7ELEELES

PT_NULL

PT_LOAD

PT_DYNAMIC

PT_INTERP

PT_NOTE
PT_SHLIB

PT_PHDR

PROGRAM LOADING AND DYNAMIC LINKING

The array element is unused; other members' values are undefined. This type lets
the program header table have ignored entries.

The array element specifies a loadable segment, described byp_filesz and
p_memsz. The bytes from the file are mapped to the beginning of the memory
segment. If the segment's memory size (p_memsz) is larger than the file size
{p_filesz), the "extra” bytes are defined to hold the value 0 and to follow the
segment’s initialized area. The file size may not be larger than the memory size.
Loadable segment entries in the program header table appear in ascending order,
sorted on the p_vaddr member.

The array element specifies dynamic linking information. See Book IIL

The array element specifies the location and size of a null-terminated path name to
invoke as an interpreter. See Book III.

The array element specifies the location and size of auxiliary information.
This segment type is reserved but has unspecified semantics. See Book TI1.

The array element, if present, specifies the location and size of the program header
table itself, both in the file and in the memory image of the program. This segment
type may not occur more than once in a file. Moreover, it may occur only if the
program header table is part of the memory image of the program. Ifit is present,
it must precede any loadable segment entry. See "Program Interpreter” in the
appendix at the end of Book III for further information.

2-3

Case 2:03-cv-00294-DAK-BCW Document 456 Filed 06/20/2005 Page 95 of 97
) T

i

Program Header

PT_LOPROC Values in this inclusive range are reserved for processor-specific semantics.
through PT HIPROC

NOTE. Unless specifically required elsewhere, all program header segment types
are optional. That is, a file's program header table may contain only those
elements relevant to its contents.

Note Section

Sometimes a vendor or system builder needs to mark an object file with special information
that other programs will check for conformance, compatibility, etc. Sections of type SET NOTE
and program header elements of type PT_NOTE can be used for this purpose. The note
information in sections and program header elements holds any number of entries, each of
which is an array of 4-byte words in the format of the farget processor. Labels appear below
to help explain note information organization, but they are not part of the specification.

Figure 2-3. Note information

namesz

descsz
type
name

desc

2-4

namesz and name The first names z bytes in name contain a null-terminated character
representation of the entry’s owner or originator. There is no formal
mechanism for avoiding name conflicts. By convention, vendors use their
ownname, such as "XYZ Computer Company,” as the identifier. If noname
is present, namesz contains 0. Padding is present, if necessary, to ensure
4-byte alignment for the descriptor. Such padding is not included in

namesz,

descsz and desc The first desesz bytes in desc hold the note descriptor. ELF places no
constraints on a descriptor's contents. If no descriptor is present, descsz
contains 0. Padding is present, if necessary, to ensure 4-byte alignment for
the next note entry. Such padding is not included in descsz.

type This word gives the interpretation of the descriptor. Each originator controls
its own types; multiple interpretations of a single type value may exist,
Thus, a program must recognize both the name and the type to "understand”
a descriptor. Types currently must be non-negative. ELF does not define
what descriptors mean.

Book I: ELF (Executable and Linking Format)

Case 2:03-cv-00294-DAK-BCW Document 456 Filed 06/20/2005 Page 96 of 97

- T

b i

Program Header

To illustrate, the following note segment holds two entries.

Figure 2-4. Example Note Segment

+0 +1 +2 +3

namesz 7
descsz 8] No descriptor
type 1

name| X Y Z
C Q 0 | pad

namesz 7
descsz 8
type 3

namet X Y Z

desc word 0

Q801983

NOTE. The system reserves note information with no rame (namesz==0) and
with a zero-length name (mame [0] =='\0") but currently defines no
types. All other names must have at least one non-rull character.

NOTE. Note information is optional. The presence of note information does not
affect a program’s TIS conformance, provided the information does not
affect the program's execution behavior. Otherwise, the program does not
conform to the TIS ELF specification and has undefined behavior.

Program Loading

Program loading is the process by which the operating system creates or augments a process
image. The manner in which this process is accomplished and how the page management
functions for the process are handled are dictated by the operating system and processor. See
the appendix at the end of Book III for more details.

Dynamic Linking
The dynamic linking process resolves references either at process initialization time and/or at
execution time. Some basic mechanisms need to be set up for a particular linkage model to
work, and there are ELF sections and header elements reserved for this purpose. The actual
definition of the linkage model is determined by the operating system and implementation.
Therefore, the contents of these sections are both operating system and processor specific. (See
the appendix at the end of Book [fI.)

PROGRAM LOADING AND DYNAMIC LINKING 2.5

