Case 2:03-cv-00294-DAK-BCW Document 456 Filed 06/20/2005 Page 43 of 97

emaphores 459
3 a b Typical
Name _ Description Value

sEMvHX | The maximum value of any semaphore, 32,767
SEMAEM | The maximum value of any semaphore’s adjust-on-exit value. 16,364
sEMNI | The maximum number of semaphore sels, systemwide. i0
SEMMNS | The maximum number of semaphores, systemwide. 60
SEMMSL | The maximum number of semaphores per semaphore set. 25
SEMMNG | The maximum number of unda structures, systemwide. 30
SEMUME { The maximum number of undo entries per undo structures. 10
SEMOPN | The maximum number of operations per semop call. 10

Figure 14.18 System limits that affect semaphores.

The first function to call is semget to obtain a semaphore 1D.

#include <sys/types.h> !
¥inelude <sys/ipe.h> - i
#include <sys/sem.h> i

int semget (key t key, int msems, int flag);

Returns: semaphore ID # OK, ~1 onerror |

In Section 14.6.1 we described the rules for converting the key into an identifier and dis-
cussed whether a new set is created or an existing set is referenced. When a new set is
created the following members of the semid_ds structure are initialized.

« The ipc_perm structure is initialized as described in Section 14.6.2. The mode
member of this structure is set to the corresponding permission bits of flag.
These permissions are specified with the constants from Figure 14.14.

* sem otimeissettol.
* sem_ctime is set to the current time.

* sem_nsems is set to nsems.

nsems is the number of semaphores in the set. If a new set is being created (typically
in the server) we must specify nsems. If we are referencing an existing set (a client) we
can specify usems as 0.

The semctl function is the catchall for various semaphore operations.

#include <sys/types.h>
#include <sys/ipc.h>
#include <syz/sem.h>

int gemctl{int sewmid, int semnum, int omd, union semun arg);

Returns: {see following)

