ATH, SWAINE & MOORE LLP
_ Chesler (admitted pro hac vice)
- Marriott (7572)

d
Eighth Avenue

ork, New York 10019
r (212) 474-1000

r Defendant/Counterclaim—Plaintijj’f

neys fo
] Business Machines Corporation

ternationa

Plaintiff/ Counterclaim—Defendant,
-against-

INTERNATIONAL BUSINESS
MACHINES CORPORATION,

Defendant/ Counterclaim-Plaintiff.

235

THE UNITED STATES DISTRICT COURT

IN
FOR THE DISTRICT OF UTAH
- THE SCO GROUP, INC,, DECLARATION OF
RANDALL DAVIS

Civil No. 2:03CV-0294 DAK
Honorable Dale A. Kimball

Magistrate Judge Brooke C. Wells

"

=
4
e
[
4

S s R

Jé 1

i S S

e A e R

L INTRODUCTION

1. My name is Randall Davis. I am a Professor of Computer Science at the
Massachusetts Institute of Technology. Exhibit I contains a resume providing details of
my technical background and experience. I received my undergraduate degree from
Dartmouth, graduating summa cum laude, Phi Beta Kappa in 1970, and a Ph.D. from
Stanford University in artificial intelligence in 1976. I came to MIT in 1978, served for
five years as Associate Director of the MIT Artificial Intelligence Laboratory, and
currently serve as a Research Director in the newly formed MIT Computer Science and
Artificial Intelligence Laboratory.

2. I have published some 50 articles on issues related to artificial intelligence and
have served on several editorial boards, including Artificial Intelligence, Al in
Engineering, and the MIT Press series in Al I am a co-author of Knowledge-Based
Systems in AL

3. In recognition of my research in artificial intelligence, I was selected in 1984 as
one of America's top 100 scientists under the age of 40 by Science Digest. In 1986 1
received the A7 Award from the Boston Computer Society for contributions to the field.
In 1990 I was named a Founding Fellow of the American Association for Al and in 1995
was elected to a two-year term as President of the Association. From 1995-1998 I served
on the Scientific Advisory Board of the U. S. Air Force.

4, In addition to my work with artificial intelligence, I have also been active in the
area of intellectual property and software. Among other things, I have served as a
member of the Advisory Board to the US Congressional Office of Technology

Assessment study on software and intellectual property, published in 1992 as Finding a

Davis Declaration 1

Balance: Computer Software, Intellectual Property, and the Challenge of Technological
Change.] have published a number of articles on the topic, including co-authoring an
article in the Columbia Law Review in 1994 entitled “A Manifesto Concerning Legal
Protection of Computer Programs” and an article in the Software Law Journal in 1992
entitled “The Nature of Software and its Consequences for Establishing and Evaluating
Similarity.”

5. Tn 1990 I served as expert to the Court (Eastern District of NY) in Computer
Associates v. Altai, a software copyright infringement case whose decision was upheld by
the Appeals Court for the 2nd Circuit in June 1992, resulting in the articulation of the
abstraction, filtration, comparison test for software. I have also been retained by the
Department of Justice in its investigation of the INSLAW matter. In 1992 (and later in
1995) my task in that engagement was to investigate alleged copyright theft and
subsequent cover-up by the Federal Bureau of Investigation, the National Security
Agency, the Drug Enforcement Agency, the United States Customs Service, and the
Defense Intelligence Agency.

6. From 1998-2000 I served as the chairman of the National Academy of Sciences
study on intellectual property rights and the emerging information infrastructure entitled
The Digital Dilemma: Intellectual Property in the Information Age, published by the
National Academy Press in February, 2000.

7. 1 have been retained as an expert in over thirty cases dealing with
misappropriation of intellectual property, such as the allegations raised in this case. I
have been retained by plaintiffs who have asked me to investigate violations of

intellectual property, by defendants who have asked me to investigate allegations made

Davis Declaration 2

against them, and by both sides to serve as the sole arbiter of a binding arbitration. A list
of cases in which I have been involved is attached as Exhibit IT.

8. I have been retained by counsel for IBM in this lawsuit and am being

compensated at a rate of $550 per hour.

IL THE TASK

9. I have been asked to examine the question of whether the lines of source code
in the 98 files in Table I (the “IBM Code”) are modifications of, or derivative works
based on, any source code in any of the 21 versions of Unix System V listed in Table II
(the “Unix System V Code”).

10. I have been instructed by counsel that one work is a “derivative work” of
another under federal copyright law if it incorporates in some form a portion of the
preexisting work and is substantially similar to the preexisting work. In my
understanding, and as I use the term in my analysis, a “modification” based on a
preexisting work must also incorporate in some form a portion of the preexisting work,
else there would be no basis for calling it a modification.

11. In performing my analysis, I have therefore undertaken to determine whether
the IBM Code incorporates any portion of source code contained in the Unix System V

Code or is any other manner similar to such Unix System V Code.

Davis Declaration 3

—T

Table I: Files and Lines of Code Identified By SCO

File Name
, kmellszg/IAM/bootrecord.h

Lines Identified By SCO

64-170

Tkemel/sys/hd sn.h

32

asr/nclude/js/ inode.h

16-37, 39-40, 62-66, 72-76, 83-158, 161-66, 172-

80, 199-205

Tgsr/mclude/liblvih 234250, 252-12, 289-307, 316-63
usr/include/lvm.h 26-35
‘ usr/include/lvmrec.h 24-92
“kemel/sys/vnodeh 109-33
: kemel/szg_/vgsa.h 37, 56-73
Dynix 4.6.1 Files
[File Name Lines Identified By SCO
“kernel/os/kern clock.c 2028-59

kemel/os/kma_defer.c

191-333, 370-427, 550-582, 603-703

_kernel/s a deferh

46-52, 95-119, 129-32, 140

kemel/i3R6/locore.s

1487-97

kemel/i386/plocal.h

1517-37

kernel/os/rclock.C

303-17, 383-613, 616-1825

kemnel/sys/rclock.h 175-228, 238-41, 243-423

kemel/i386/startup.c 2054

kernel/i3R6/trap.c 1554-63

kemel/os/vis_dio.c No lines identified

JFS Files

File Name Lines Identified By SCO _l
nclude/linux/jfs/refjfs_aixisms.h 26-27, 32, 62, 193, 227, 248 ‘]
include/linux/jfs/refjfs_direnth 55]
include/linux/jfs/refljfs_inode.h 76-77, 81, 95, 97, 192-233, 343425
include/linux/jfs/refljfs_os2.h 33-34

include/linux/jfs/refljfs_dasdlim.h No lines identified

include/linux/jfs/reffjfs_dinode.h 35-49, 53-200

include/linux/jis/refljfs_lock.h 72-119, 338-391, 395-406
include/linux/jfs/ref/jfs_superblock.h 19-105

include/tinux/jfs/reffjfs_btree.n 19-113, 115-143]

include/linux/jfs/refljfs_bufmgrh

30-33, 3749, 123-141, 274-279

include/linux/jfs/refljfs_cachemgr.h

71-108, 371-388

include/linux/jfs/ref/jfs_chkdsk.h

No lines identified

include/Tinux/jfs/refljfs_clrbbiks.h

24-48, 52-60

include/linux/jfs/ref/jfs_debug.h

28-30, 81-93, 96-106, 117-134, 137-142, 146-168

include/linux/jfs/reffjfs_defragfs.h

20-56

include/linux/jfs/refljfs_dmap.h

22-272, 276-324

include/linux/jfs/ref/jfs_dtreeh

25-79, 88-210, 233-287, 312-323

include/linux/jfs/refljfs_extendfs.n

19-29, 32-39

include/linux/jfs/refljfs_filsys.h

76-103, 167-172, 230-256, 266-277, 279-321

=

include/linux/jfs/ref/jfs_imap.h

19-168

include/linux/jfs/ref/jfs_io.h

No lines identified

include/linux/jfs/refljfs_logmegr.h

34506, 540-577

58-62,117-128

i_ncludellinux/jfs/ref/jfs _proto.h
| include/linux/jfs/reffjfs_txnmgr.h

25-251, 255-345

Davis Declaration

3

R

g

nclude/linux/jfs/refljfs_types. h

100-223, 299-582

mclude/hnux/st/reﬂst utilL.h

38-62

mclude/lmux/_)fs/reﬂjfs xtreeh

24-131, 139-212

f/ifs/irefjfs_dio.c

333

fo/jfsirefljfs_logmer.c

27-67, 113-132, 165-781, 1052-1607, 1623- 3211

fo/jfs/refljfs_bufmgr.c

289-311, 364-441, 557-649, 682-917, 1270- 1468,
1691-2016, 2102-2194

No lines identified

fuljfo/ref/ifs_cachemgr.c

fs/jfs/ref/ﬁsﬂdnlc.c

55-89, 140-200, 212-224, 251-322, 325-338, 402-
451, 485-573, 685-713

fo/jfs/refljfs_diree.c No lines identified
Te/ifsireflifs_ifs.c No lines identified
‘fg/‘L'f’s/Teﬂjfs initl.c No lines identified
fefifsfrefljfs_inode.c 312-350, 390-463, 483-510
fo/ifsireffifs_link.c 33-152
fs/ifs/refljfs_mknod.c No lines identified
fo/ifs/refljfs_readdir.c 38-113

fo/jfs/refljfs readlink.c 26-110
fs/ifsireffifs_statfs.c 23-139
fy/jfs/refljfs_symlink.c 23-204

f/ifsfreffifs_txnmegr.c

26-89, 122-132, 155-351, 380-414, 463-482, 531-
661, 677-682, 710-767, 806-1153, 1162-1182,
1194-1246 1293-1298, 1318-1539, 1577-1761,
1796-1856, 1883-1910, 1922-2097, 2115-2151,
2219-2321, 2350-2674, 2822-2845, 2983-3003

fs/jfs/ref/selector.c

No lines identified

fs/jfsirefljfs_create.c

41-121, 127-135, 153-169, 193-223, 233-239, 241-
264

fs/jfsrefljfs_defragfs.c

33.75, 84-89, 108-111, 119-264

fs/jfs/refljfs_dmap.c 43-4475
fs/jfs/refljfs_extendfs.c 43-153, 185-249, 293-579
fs/jfs/ref/ifs_fsync.c 32-84

fs/jfs/refljfs_firuncate.c 37-129, 143, 156-170, 230-341
fs/ifs/refljfs_getatir.c 33-124

fs/ifs/reflifs_hold.c 33-63

fs/ifs/refljfs_imap.c

27-665, 680-2855, 2876-2893, 2504-2950

fs/jfs/refljfs_lookup.c

37-179

fs/jfs/reflifs mkdir.c

37-111, 130-213, 222-264, 322-345

f8/jfs/refljfs_mount.c

31-188, 198-215, 229-785

fs/jfs/refljfs open.c

37-98, 117-126, 218-277, 292-312

f5/jifs/ref/ifs relec

31-64

fs/jfs/refljfs remove.c

36-145, 157-464

fs/jfs/refljfs_rename.c

36-222, 246-313, 390-526, 577-651, 760-791

fs/ifs/ref/jfs rmdir.c

36-125, 137-156, 188-193

fs/jfs/reffifs umount.c

45-182, 198-307,318-322

fs/jfs/refljfs util.c

49-120, 133-163, 175-230, 300-425

Linux 2.6.5 Files

File Name Lines ldentified By SCO
arch/i386/kemel/srat.c 1-450
arch/i386/kernel/numag.c 1-112
arch/i386/mach-es7000/topology.c 35-49

Davis Declaration

b

i R

arch/i386/mach-default/topology.c

35-49

arch/i386/mm/discontig.c 1434
arch/i386/pci/numa.c 1-129

arch/ppc64/kemel/smp.c 733-754, 783
W%64/mm/nmnac 1-374

include/asm-i386/topology.h 1-85

include/asm-i386/mmzone.h 1-154

include/asm-1386/numag.h 1-164

include/asm-ppc64/mmzone.h 1-95

include/asm-ppc64/topology.h 1-49

include/linux/mmzone.h 350-62

include/linux/numa.h 1-16

kemel/sched.c 44,212-13,239-72, 1002-1126, 1390-1401, 1407,

1421-22, 1432-33

mm/page_alloc.c

[724]-726, 737-738, 827-35, 889-92, 983-92, 1137-
1238

The 8 AIX files are listed in SCO's Revised Supplemental Response to IBM’s First and Second Set of

Interrogatories, dated 12 January 2004; SCO identified a total of 468 lines.

The 10 Dynix files are listed in SCO’s Revised Supplemental Response and Exhibit D of the letter fiom B.
Hatch to T. Shaughnessy of 19 April 2004; SCO identified a total of 2,162 lines.

The 17 Linux 2.6.5 files are listed in Exhibit C of the letter of 19 April 2004; SCO identified 2,437 lines.
SCO’s letter identifies lines 794 to 726 of mmvpage_alloc.c, which appears to be a typographical error.

The 63 JFS files are listed (with some repetition) in Tables H and I of SCO’s Revised Supplemental

Response, and Exhibit B of the letter of 19 April 2004;

Grand total: 26,759 lines identified by SCO in 98 files.

Davis Declaration

SCO identified 21,692 lines.

A A A A E I

Table IT: Versions of Unix System V used in this comparison

—VERSION OF UNIX SYSTEM V NUMBER OF FILES TOTAL LINES OF
SOURCE MATERIAL

Gystem V version 1.0 1,400 347,099
System V version 1.1 1,253 208,086
System V version 2.0 4,372 896,148
System V version 2.0 3B20 3,256 577,484
System V version 2.2.0_3B15 4,530 985,196
System V. version 2.1.0V1_VAX 2,401 477,251
System V version 2.1 3 1,280 360,281
System V 3.0 4,781 818,403
System V 3.1 3,849 631,382

’sﬁt?m V32 4,369 702,328
System V 3.2 for 386 4,810 991,212
System V 4.0 for 386 9,472 1,853,434
System V 4.0v2 for 386 11,771 2,367,995
System V' 4.0v3 for 386 9,466 1,957,328
System V 4.0 MP 12,649 2,876,245
System V 4.1 21,798 3,567,560
System V 4.1 ES 11,902 2,595,549
System V 4.2 ES-MP 21,577 5,148,564
UnixWare 1.1 28,869 6,493,708
UnixWare 2.1 44,340 10,182,665
UnixWare 7.1.3 70,397 23,759,651
TOTALS 278,542 67,797,569

12. The conclusions set out here are not intended as, and do not represent, legal
conclusions. My conclusions are instead based upon my understanding of the law with
respect to the appropriate process and procedures for making a judgment of substantial
similarity.

13. T understand the accepted process for determining substantial similarity to call
for abstraction, filtration, and comparison, although when modest amounts of code are
involved, the abstraction step may not be required. I understand filtration to involve the
removal of at least the following elements: ideas, purposes, functions, procedures,
processes, systems, methods of operation, facts, unoriginal elements (e.g., those in the

public domain), expression that is inseparable from or merged with ideas or processes,

Davis Declaration

and expressions that are standard, stock, or common to a particular topic, or that

necessarily follow from a common theme or setting.

14. 1 understand further that with respect to computer programs in particular, the
scénes 2 faire doctrine:

excludes from protection those elements of a program that have been

dictated by external factors. In the area of computer programs these

external factors may include: hardware standards and mechanical

specifications, software standards and compatibility requirements,

computer manufacturer design standards, target industry practices and
demands, and computer industry pro gramming practices.

Gates Rubber v Bando, all citations omitted

15. The opinions I report here are based on the documents I have reviewed (a list
is given in Exhibit III), and on my knowledge, background, and experience in the field of
computer science. I am continuing work on this and reserve the right to augment my

findings as additional information becomes available to me.

M. SUMMARY OF FINDINGS

16. Despite an extensive review, I could find no source code in any of the IBM
Code that incorporates any portion of the source code contained in the Unix System V
Code or is in any other manner similar to such source code. Accordingly, the IBM Code
cannot be said, in my opinion, to be a modification or a derivative work based on the
Unix System V Code.

17. As explained in detail below, I used two programs, called COMPARATOR and
SIM, to help automate the process. COMPARATOR looks for lines of text that are literally or
nearly literally identical, while SM looks for co de that is syntactically the same.

18. T used both programs to compare all 26,759 lines of the IBM Code identified

by SCO against all 67,797,569 lines in the Unix System V Code.

Davis Declaration

19. 1 believe that the comparisons I performed using these tools are conservative
‘and hence resulted in more potential matches than might otherwise be found using a less
conservative appro ach.

20. These comparisons required on the order of 10 hours of computation time on a
dual 3 GHz Xeon processor system with 2GB of RAM. This is a high-end workstation,
routinely and easily available off the shelf from commercial vendors such as Dell.

21. COMPARATOR reported 15 potential hits. Ireviewed each of these potential
hits in detail and determined them not to be true matches of copied code, but rather
coincidental matches of common terms in the C programming language. (Paragraphs 27-
30 below discuss coincidental matches in COMPARATOR.)

22. sM did not report any potential hits.

IV. METHODOLOGY

23. T was asked to analyze the specific AIX and Dynix files and lines of code
cited by SCO in their filings (and listed in Table I). In instances where SCO failed to
identify any specific AIX and Dynix code upon which code in Linux is allegedly based, I
was asked to analyze the Linux files and lines of code cited by SCO (and listed in Table
I). Finally, I was asked to analyze the JFS files and lines of code cited by SCO (and listed
in Table I), even though SCO did not identify any corresponding AIX, Dynix, or Linux
code for such files. All of this IBM Code in Table I was compared to all of the Unix

System Code in Table II to determine if the IBM Code contains any portion of the Unix

Davis Declaration

ystem y Code or is in any other manner similar to any portion of the Unix System V

1
ode.

24. For purposes of my review, I did not first apply the “gbstraction” and

filtration” analyses to the Unix System V Code. Instead, to be conservative, assumed

at all of the Unix System V code was in fact protectable (although I do not believe all

ystem

fsuch code in fact to be protectable) and proceeded to compare all of the Unix S

ode with all of the IBM Code to see if there were any true matches of copied code in

I then applied the “filtration” analysis to the

vC
the first place. To the extent necessary,

reportedly matching code to determine if such code was in fact protectable.

25. In doing my analysis I used two programs, employing two different

erial in the IBM Code that might contain, or be similar to,
de. The first, called COMPARATOR [1], is designed to

find sequences of lines in two different files that are literally, or nearly-literally the same.

The second program, SIM [2], is designed to detect non-literal similarities at the level of

syntactic structure.

26. Both programs take two lists of files and compare every line in the first set of

set, and report every match they find. Each match

files against every line in the second

' In addition to the analysis reviewed herein, 1 also manually reviewed the following Linux code cited in
(lines 119-52) and kernel/futex.c (159, 178, 137,

the 7 July 2004 Declaration of Sandeep Gupta: ipcfutil.c

188-91, 456, 489, 495, 298-300, 302-08). This review could be carried out manually because Mr. Gupta
had specified specific lines that were alleged to be similar. There was thus no need to run the comparison
tools, which are designed to find matches. 1 compared the lines of Linux code identified by Mr. Gupta with
the specific lines of System V 4.2 ES-MP code that Mr. Gupta claims matches the Linux code. Asis
obvious upon review (and may be obvious even to a non-technical reviewer), the Linux code cited by Mr.
Gupta does not contain any of, and is not in any way similar to, the Unix code that he cites. The code is
entirely different. In my opinion, therefore, the code cited by Mr. Gupta for ipc/util.c and kernel/futex.c

cannot be considered modifications or derivative works of Unix System V.

Davis Declaration 1

consists of a file name and line numbers indicating places in each file that the program
believes to be similar.

27. The first step of my methodology was to compare all the IBM Code against
all the Unix System V Code. At my direction, one of my assistants ran the IBM Code
and the Unix System V Code through the COMPARATOR and SIM programs to generate a
set of initial matches.

28. Next, I manually reviewed all of the matches reported by the comparison
tools. All of the matches that I reviewed were not true matches of copied code. Asa
result, I did not have to perform any “filtration” analysis on the code.

29. The matches reported by COMPARATOR between the IBM Code and the Unix
System V Code consisted of coincidental matches of termino logy in the C programming
language, and thus not true matches. These coincidental matches arise in much the same
way that, if we compared the entire text of two novels (e.g., War and Peace and A Tale of
Two Cities), we would surely find that they both contain the phrase “and then they”
somewhere within them. Such coincidences of common language are no more indicative
of copying in English than the corresponding matches of programming text are in the
large bodies of code examined here.

30. The box below shows one of the reported matches from the lines of code cited

by SCO. COMPARATOR reported a match between lines 588-591 in rclock.c and lines

1665-1667 from System V UWL.1 /src/i386at/uts/io/target/sdi.c:

F Lines 588-591 from rclock.c Lines 1665-1667 from sdi.c
#endif /* RCLOCK_PROF */ #endif
return;
} return; }

Davis Declaration 11

The two “words”™— endif and return — that appear in the two files are so
common in code written in the C language that finding them together like this is purely

an accident, of no significance in detecting copying. In particular, the code from each file
above simply signifies the ending of a routine; it is as if we had found two bodies of
unrelated English text that each happened to conclude with the words “the end”.

31. Note that there are 4 lines cited from the IBM file but only three from the
Unix file. This is because COMPARATOR ignores blank lines (the second line in the IBM
code excerpt is blank), which keeps it from being misled by this sort of immaterial
variation. COMPARATOR also ignores single line comments (i.e., a line of text that start
with /*”), hence its finding that the first line in each of these excerpts is similar.? This is
another way in which it is not misled by immaterial variation. These are two of the
factors why COMPARATOR is described above by saying that it “looks for lines of text that
are literally or nearly literally identical”. |

32. All of the potential hits reported by COMPARATOR were of the type discussed
in paragraphs 29 and 30; i.e., they consisted entirely of coincidental matches of common
terms in the C programming language. Even two programs known to have no code copied
from one to the other will show these sorts of coincidental matches. Given the volume of
code in question here (e.g., 68,000,000 lines of Unix code), the presence of these type of

matches is both to be expected, and evidence that the tool was in fact performing

successfully in finding potential matches.

? While COMPARATOR ignores a single line comment, i.e., a line of text that starts with “/*”, it does
compare the English text that appears in multi-line comments, allowing it to find identical or nearly
identical multi-line comments in code. This is useful because overlaps in English comments can be an
effective indicator that we ought to search for both literal and non-literal similarity in the source code that
follows the comment.

Davis Declaration 12

33, In this mstance, then, 1 did not need to perform a “filtration” analysis with

se they were not true matches of code at all. In any casc,

spect to these matches, becau
o matches would not be protectable under the filtration analysis. At best, they could

clichés or stock phrases, the sorts of things that are routinely “said” in

pe thought of as
hor, and that cannot therefore be considered significant when

ource code by any aut

looking for copying.

34. The SIM program did not report any matches between the IBM Code and the

As I result, I did not have to manually review any such code for

'Unix System V code.

false positives.

35. The remainder of this section describes the algorithms used by the comparison

programs and the local modifications that were made to enhance the prograims.

Iv.l. COMPARATOR

36. The COMPARATOR program considers each file 3 lines at a time, and identifies

all files that share the same 3 (or more) lines of code.

37. COMPARATOR “normalizes” its input, so that differences resulting from

comments, case, and white space are ignored. This prevents immaterial changes that may

arise from code copying from fooling the program. Then, all input is ““shredded” into

overlapping 3 line segments and identical segments from different files are gathered

together.® Adjacent identical sections (e.g., lines 3-5 and lines 4-6) are then combined

into a single section (e.g., lines 3-6).

* We require 3-line segments as a basis for a match in order to avoid the large number of accidental

matches that would show up if only 1 or 2 lines were required to match. As arough analogy, if we took two

unrelated textual documents and looked for all matching 2-word sequences, wWe would find many of them
espite the fact that the documents were unrelated.

(e.g., “and the,” “used by,” “with a,” “were made,” etc.), d
13

Davis Declaration

v2 SM

| 38, The SIM program works by breaking source files into tokens (i.e., such as
language keyword, punctuation, variables, constants, and the like) and comparing
sequences of tokens for commonality. This conversion of source into tokens allows the
program to focus solely on the structure of the code.

39. For example, a statement hke

if (a > b} return &; else return b;

is structurally the same as

if (¢ > b) return ¢; else return b;

40. Both statements have the same syntactic structure, namely:

1f (var > Var) Return Var; Else Return Var;

which SIM would identify as a match.*

IV.3. Modifications to the Programs

41, Slight modifications were made to both of these programs to make them faster
and more efficient, so that they could handle the large amount of source code under
consideration in this case.

42. As publicly distributed, COMPARATOR and its associated scripts have several
major performance bottlenecks, which were identified and removed by my assistant.
These fixes improved the speed at which the program operated; they did not alter the

methodology used by the program to find matches.

If we look for 3-word sequences in common (&.g., “ysed by the”), we would find far fewer of them, and
could use those muore reliably to build up evidence for matches.

4 P

This is analogous to finding that the following two English sentences have exactly the same syntactic
StI'U(iture, yet are clearly not copied from one another: () “The tall boy threw the bail to the dog,” and
(b) “The coded message divulged the secret to the spy.”

Davis Declaration 14

d by my assistant to reduce the number of false matches it

43. SIM was modifie

produced. It was determined that many matches reported by SIM arise because the

program treats all numbers, strings and variable identifiers identically. For example, t0

3, 4 looks just the same as a list of very different

s1M, a list of Integers suchas 1, 2,

sumbers, such as 73234, 15 92, 7182, 31415, because syntactically they are both

ers. This occurs in the current context because operating

simply 8 list of four numb

systems code commonly inctudes jong arrays of numbers that encode instructions for

hardware. This also arises in structure initializations where there may be long sequences

of identifiers. Arrays of character strings are also common as means of associating strings

 with certain numeric values (e.g., error codes and messages).

44. These false matches in SIM were avoided by first making tokenizing stricter —

strings and numbers are considered to be the same only if they have the same value.’

Next, a step within SIM itself removes matches that consist of a sequence where over 70%

of the tokens are commas, identifiers, numbers, strings and tokens that are part of C’s

“switch” statements.

IV.4. Alternative Tools

45. Most other tools available to assist in organizing code for expert inspection

operate in a similar manner. Tools like Jplag [3] and MOSS [4] operate similarly to SIM,

tokenizing the input stream in order to compare code structure, but differing in the way

they optimize the algorithms for performance. MOSS in particular uses a statistical

ave the same hash value when
few strings and numbers
ch more conservative,

and numbers are considered the same only if they h
a slightly “noisy” equality test: a
al. Note that this, too, makes our sear

¥ More precisely, strings
hashed into a 256-value key. This is, in effect,
that are not in fact equal will be reported as equ
i.e., it will report a few more false positives.

Davis Declaration P

sampling technique which results in a very small probability that a duplication may be

missed.

46. The combination of line matching and syntactic analysis used in this

comparison is similar to the technique used by CodeMatch [5],a commercial program for

detecting code copying. CodeMatch uses the same algorithms as COMPARATOR and SIM

and adds three smaller tests: comparing the number of identical words in two files,

another file, and

comparing the number of words in one file that appear as sub-words in

checking comment lines.

47. SM and COMPARATOR were chosen both because they provided the

capabilities needed, and because they offered full access t0 their source code, making it

possible to understand exactly how they worked and to customize them to the needs of

this case. The comparisons I performed using SIM and COMPARATOR were intended to be

as conservative as possible and to produce the most potential matches for me to review

individually.

V. SUMMARY

48. After a detailed review that exhaustively compared almost 27,000 lines of

IBM Code against almost 68,000,000 lines of Unix System V Code, 1 could find no

evidence that any of the IBM Code incorporates a portion of, or is similar to, any of the

Unix System V Code.
49. 1 therefore conclude that the IBM Code is not a modification or a derivative

work based on the Unix System V Code.

16

Davis Declaration

- 50. I declare under penalty of perjury that the foregoing is true and correct.

Randall Davis

17

Davis Declaration

REFERENCES

‘Raymond, Erik, COMPARATOR, http://www.catb.org/~esr/comparator

Grune, Dick, The software qnd text similarity tester SIM,
WMEMM, Version 2.12.
Guido Malpohl, Michael Philippsen, Finding Plagiarisms among a Set

Lutz Prechelt,
Journal of Universal Computer Science, 2002, 8: 11, pp.

of Programs with Jplag,
1016-1038.

Saul Schleimer, Daniel Wilkerson, Alex Aiken, Winnowing: Local Algorithms for
Document Fingerprinting, Proceedings of the 2003 ACM SIGMOD International

Conference on Management of Data, 2003, pp. 76-85.

Zeidman, Bob, CodeMatch detects plagiarism,
http://www.zeidmanconsulting.com/ codematch.htm

Davis Declaration

18

