

IN THE UNITED STATES DISTRICT COURT

FOR THE DISTRICT OF UTAH

THE SCO GROUP, INC.

 Plaintiff/Counterclaim-Defendant,

v.

INTERNATIONAL BUSINESS

MACHINES CORPORATION,

 Defendant/Counterclaim-Plaintiff.

DECLARATION OF MARC

ROCHKIND IN SUPPORT OF SCO’S

MOTION FOR RECONSIDERATION

OF THE ORDER DENYING SCO’S

MOTION FOR RELIEF FOR IBM’S

SPOLIATION OF EVIDENCE

Case No. 2:03CV0294DAK

Honorable Dale A. Kimball

Magistrate Judge Brooke C. Wells

Brent O. Hatch (5715)

HATCH, JAMES & DODGE, PC

10 West Broadway, Suite 400

Salt Lake City, Utah 84101

Telephone: (801) 363-6363

Facsimile: (801) 363-6666

Robert Silver (admitted pro hac vice)

Edward Normand (admitted pro hac vice)

BOIES, SCHILLER & FLEXNER LLP

333 Main Street

Armonk, New York 10504

Telephone: (914) 749-8200

Facsimile: (914) 749-8300

Devan V. Padmanabhan (admitted pro hac vice)

DORSEY & WHITNEY LLP

50 South Sixth Street, Suite 1500

Minneapolis, Minnesota 55402

Telephone: (612) 340-2600

Facsimile: (612) 340-2868

Attorneys for Plaintiff, The SCO Group, Inc.

Stephen N. Zack (admitted pro hac vice)

BOIES, SCHILLER & FLEXNER LLP

Bank of America Tower – Suite 2800

100 Southeast Second Street

Miami, Florida 33131

Telephone: (305) 539-8400

Facsimile: (305) 539-1307

Stuart Singer (admitted pro hac vice)

BOIES, SCHILLER & FLEXNER LLP

401 East Las Olas Blvd.

Suite 1200

Fort Lauderdale, FL 33301

Telephone: (954) 356-0011

Facsimile: (954) 356-0022

Case 2:03-cv-00294-DAK-BCW Document 1006 Filed 03/20/2007 Page 1 of 9

2

1. I was retained by counsel to SCO in May 2005, to analyze the technical evidence

in this case, to help prepare the preliminary October and December 2005 Disclosure of Material

(the "December Submission") and to serve as a consultant and expert witness. I have since been

asked to review certain issues related to the denial by the Magistrate Court of SCO's Motion for

Relief for IBM's Spoliation of Evidence, and my conclusions regarding those issues are set forth

herein. My qualifications are set forth in my May 19, 2006 report submitted in this case.

SCO’s Use of CMVC to Develop Proof

2. I spent 200 to 300 hours setting up and reviewing CMVC and the AIX source

code contained in it.

3. I used CMVC extensively in developing SCO’s December Submission and my

expert report. For example, AIX code from the CMVC system appears in Item 1, covering JFS,

and Items 194-202 (Tabs 210-218) of the December Submission. These Items and their

associated Tabs are clearly marked on every page as containing AIX code, along with the version

numbers as placed in the files by CMVC. Tabs 210-218 alone contain 441,020 lines of source

code (colored red) from System V that appears in AIX, which SCO alleges was misused.

4. I also extensively used the RCS system, which contains Dynix/ptx code.

5. Both CMVC and RCS have been extremely helpful in developing the substantial

proof that IBM misused SCO’s intellectual property, as presented in the December Submission

and my expert report.

6. However, as set forth below, neither CMVC nor RCS is a substitute for the

information that would have been contained in programmers’ sandboxes.

Case 2:03-cv-00294-DAK-BCW Document 1006 Filed 03/20/2007 Page 2 of 9

3

Use of Sandboxes by Linux Programmers

7. I understand IBM represented that sandboxes were not used for Linux

development. This is inconsistent with my understanding of programming. While the term

“sandboxes” may not be used for Linux development, it would be incredibly difficult, if not

impossible, to write and revise computer code without using a separate workspace, such as a

sandbox, in which to implement and test those revisions. It is essential that all details of a

proposed operating feature or patch be worked out in an environment separate from the online or

official copy of the source code. This separate environment, the private programmer workspace,

is often called a sandbox.

8. Thus, I believe that IBM programmers for Dynix/ptx and Linux, as well as AIX,

would have had to use sandboxes, or other similar workspaces, to draft, revise and implement

computer code for those systems.

9. My opinion that IBM programmers of Dynix/ptx and Linux would have used

sandboxes, or similar systems, when writing code is supported by an interview with an IBM

programmer, William Lee Irwin III, posted on the following internet website:

http://kerneltrap.org/comment/reply/80, attached as Exhibit A hereto. The programmer said that

he had been employed by Sequent and then IBM since 2000, and that he worked on Dynix/ptx,

then AIX, and then Linux. When asked whether he had “any tips for the aspiring kernel hacker”

(e.g., Linux programmer) he responded:

Everyone says persistence is key, but it's not enough. One thing I've
noticed is that because the kernel is responsible for maintaining the

Case 2:03-cv-00294-DAK-BCW Document 1006 Filed 03/20/2007 Page 3 of 9

4

integrity of both data and the running system image, the cost of a failure
(i.e. bugs, and as with any programming, they are numerous) is that data is
lost and systems go down. A big fear to overcome is that of disrupting the
proper operation of a system or losing data. When a kernel crashes it
destroys data and the machine goes down, and you can't be afraid to see
this happen if you're going to get anywhere. Programming is error-prone,
and one must be prepared to commit errors. A stumbling block for me
early on was that I was too careful and obsessed on repeatedly reviewing
code to be sure the system wouldn't crash when I tried to run with it.

This is ineffective. A more effective approach appears to be creating a
sandbox where the data is disposable and the system nonessential and
running the code and figuring out what went wrong when the system
crashes. And it's not easy. Without much hardware assistance (requiring
too much money to be practical) it's generally not possible to recover
much of the system state after the event, so working around this by
dumping state at the appropriate times or running within a simulator
(fortunately, bochs is free as in beer) is required. Some infrastructures
exist, e.g. kgdb and kdb. I'm already espousing perhaps heretical notions,
but I don't care. And another thing is that reading code is harder than
writing it (and debugging is harder than both but moving on) so a from-
scratch rewrite of something will be easier than finding the small changes
needed to fix real problems. For regular kernel hacking, rewrites aren't
going to get anywhere, those who wrote the originals will scream bloody
murder and those who have to call the stuff are terrified they'll have to
deal with new bugs in unfamiliar code. But as a crutch for getting around
not quite being able to read things it's fine. Maybe someone will come
after me for saying so as there are bound to be frivolous rewrites of all
kinds of things after any kind of public statement like this, but if people
get off their butts and stop duplicating everyone else's merges of $VM +
O(1) + misc garbage to write some actual new code, it's worth the flames.

(Ex. A) (emphasis added.) In short, in this interview, an IBM programmer recommended use of

a sandbox to other Linux programmers as “a more effective approach” to programming for

Linux. This supports my view that sandboxes or similar systems would have had to have been

used by IBM and Sequent programmers in their work on Dynix/ptx and Linux.

Information in CMVC and RCS Versus Information in a Programmer’s Sandbox

Case 2:03-cv-00294-DAK-BCW Document 1006 Filed 03/20/2007 Page 4 of 9

5

10. The CMVC and RCS systems are not substitutes for the information that would

have been contained in programmers’ sandboxes or similar workspaces.

11. First, CMVC was exclusively used for AIX code. Thus, copies of Dynix/ptx and

Linux code deleted from programmers’ sandboxes would clearly not be available in the CMVC.

12. Second, neither CMVC (as to AIX) nor RCS (as to Dynix/ptx) would show

whether Linux programmers had retained AIX and Dynix/ptx on their systems when developing

code for Linux, and if so, what parts of the AIX and Dynix/ptx operating systems they retained.

13. Third, a sandbox is the only place where the progression of code drafts can be

viewed. For AIX code, CMVC shows the initial code that was checked out, and the final code

that was checked back in, but not all the steps in between. The RCS system for Dynix/ptx

provides even fewer details than CMVC. Yet it is these steps, these intermediate drafts, – saved

only on programmers’ sandboxes – that would have been so important to develop further proof

of IBM’s copying.

14. A change control system, such as CMVC or RCS, is like a library, and the AIX

and Dynix/ptx files in those systems are like books in a library. Just as a library has records of

(a) which books have been checked out, (b) when they were checked out, (c) who checked the

books out, and (d) when they were checked back in, a change control system, such as CMVC or

RCS might have records of (a) which files in AIX or Dynix/ptx were checked out, (b) when they

were checked out, (c) who checked them out, and (d) when they were checked back in.

15. What a library does not record, and could not record, is what was done with the

books during the time they were checked out, and what was done with any copies made of the

books after they were checked back in. For example, the records in a library will not show:

Case 2:03-cv-00294-DAK-BCW Document 1006 Filed 03/20/2007 Page 5 of 9

6

a. whether the pages of book were copied while the book was checked out;

b. whether the reader retained pages he copied from the book he checked out,

long after checking the book back in;

c. whether the reader later used those pages to write another book; or

d. what the progression of drafts of the readers’ other book looked like –

whether the first drafts similar to the library book he had copied, and then became

progressively dissimilar.

16. Similarly, none of this information is present in CMVC in RCS. Like a library

system, CMVC and RCS do not show what the programmers did with the AIX and Dynix/ptx

files on their systems – in their sandboxes – after they checked it out, or even after they checked

it back into the change control system. CMVC and RCS do not show:

a. whether the AIX and Dynix/ptx files that were checked out were copied or

saved to the programmers’ system (or sandbox);

b. whether the programmer retained the copied AIX and Dynix/ptx files on

his or her system (or sandbox) long after checking the completed files back into the

change control system;

c. whether the programmer ever referred back to those AIX and Dynix/ptx

files when he was developing for another operating system, such as Linux;

d. what the progression of drafts of the programmers’ code for the other

operating system, such as Linux, looked like – whether the first drafts were similar to the

AIX and Dynix/ptx files he had copied, and then became progressively dissimilar,

Case 2:03-cv-00294-DAK-BCW Document 1006 Filed 03/20/2007 Page 6 of 9

7

perhaps as the author tried to hide his copying, until the final version actually bore little

resemblance to the AIX and Dynix/ptx files files on which it had been based; or

e. whether other programmers made use of the checked-out code by

obtaining it in already-checked-out form from the programmer who originally checked it

out.

17. In contrast, a programmers’ sandbox would show whether AIX and Dynix/ptx

files were present and available to the programmer as he worked on Linux, and what specific

files the programmers had retained. The code in a programmers’ sandbox or similar workspace

also would have shown his initial drafts of code and the progression of drafts after that initial

draft, leading to the final version; these drafts would not be available anywhere else. From the

progression of drafts it could be determined whether the programmers’ initial drafts of code for

Linux bore a greater resemblance to the copied AIX and Dynix/ptx files than the final draft that

was ultimately disclosed to Linux.

18. Even by reviewing only the final contributions of code to Linux, I identified a

significant instance of AIX code in Linux and multiple instances of Dynix/ptx code in Linux.

The availability of sandboxes would have shown whether even more instances of direct copying

existed, and would have enabled me to provide more specificity regarding the Dynix/ptx and

AIX code underlying the programmers’ disclosures to Linux.

Destruction of Sandboxes

19. In my experience, it would be highly unusual for management to get involved in

“house-keeping” measures regarding programmers’ systems, other than when a concern exists

Case 2:03-cv-00294-DAK-BCW Document 1006 Filed 03/20/2007 Page 7 of 9

Case 2:03-cv-00294-DAK-BCW Document 1006 Filed 03/20/2007 Page 8 of 9

CERTIFICATE OF SERVICE

Plaintiff/Counterclaim-Defendant, The SCO Group, Inc., hereby certifies that a true and

correct copy of the foregoing was served on Defendant/Counterclaim-Plaintiff, International

Business Machines Corporation, on this 20th day of March 2007, via CM/ECF to the

following:

David Marriott, Esq. (dmarrriott@cravath.com)

Cravath, Swaine & Moore LLP

Worldwide Plaza

825 Eighth Avenue

New York, New York 10019

Todd Shaughnessy, Esq. (tshaugnessy@swlaw.com)

Snell & Wilmer LLP

1200 Gateway Tower West

15 West South Temple

Salt Lake City, Utah 84101-1004

 /s/ Edward Normand

Case 2:03-cv-00294-DAK-BCW Document 1006 Filed 03/20/2007 Page 9 of 9

