

IN THE UNITED STATES DISTRICT COURT

FOR THE DISTRICT OF UTAH

THE SCO GROUP, INC.

 Plaintiff/Counterclaim-Defendant,

v.

INTERNATIONAL BUSINESS

MACHINES CORPORATION,

 Defendant/Counterclaim-Plaintiff.

DECLARATION OF EVAN IVIE IN

SUPPORT OF SCO’S MOTION FOR

RECONSIDERATION BY THE

MAGISTRATE COURT OF THE

ORDER DENYING SCO’S MOTION

FOR RELIEF FOR IBM’S

SPOLIATION OF EVIDENCE

Case No. 2:03CV-0294DAK

Honorable Dale A. Kimball

Magistrate Judge Brooke C. Wells

Brent O. Hatch (5715)

HATCH, JAMES & DODGE, PC

10 West Broadway, Suite 400

Salt Lake City, Utah 84101

Telephone: (801) 363-6363

Facsimile: (801) 363-6666

Robert Silver (admitted pro hac vice)

Edward Normand (admitted pro hac vice)

BOIES, SCHILLER & FLEXNER LLP

333 Main Street

Armonk, New York 10504

Telephone: (914) 749-8200

Facsimile: (914) 749-8300

Devan V. Padmanabhan (admitted pro hac vice)

DORSEY & WHITNEY LLP

50 South Sixth Street, Suite 1500

Minneapolis, Minnesota 55402

Telephone: (612) 340-2600

Facsimile: (612) 340-2868

Attorneys for Plaintiff, The SCO Group, Inc.

Stephen N. Zack (admitted pro hac vice)

BOIES, SCHILLER & FLEXNER LLP

Bank of America Tower – Suite 2800

100 Southeast Second Street

Miami, Florida 33131

Telephone: (305) 539-8400

Facsimile: (305) 539-1307

Stuart Singer (admitted pro hac vice)

BOIES, SCHILLER & FLEXNER LLP

401 East Las Olas Blvd.

Suite 1200

Fort Lauderdale, FL 33301

Telephone: (954) 356-0011

Facsimile: (954) 356-0022

Case 2:03-cv-00294-DAK-BCW Document 1003 Filed 03/20/2007 Page 1 of 9

2

1. I was retained by counsel to SCO to analyze the technical evidence in this case

and to serve as a consultant and expert witness. I have been asked to comment on the use of

sandboxes or similar programming environments in the development of Linux code at IBM,

the importance to the case of information in such sandboxes, and whether other sources of

information such as CMVC or RCS might suffice in evaluating what went on in that

development process in sandboxes. My qualifications are set forth in my May 19, 2006 report

submitted in this case.

Programming Environments (e.g. Sandboxes) Were Used by IBM Linux and Dynix/ptx

Programmers

2. I understand that counsel for IBM represented that sandboxes were not used for

Linux development. Any creative process requires an environment and facility where that

creative process can take place. An artist creates paintings in a studio. A woodcarver creates

carvings in a woodshop. Artisans, craftsmen, and skilled workers develop facilities where they

can perform their work: workbenches, body shops, bakeries, etc. Programmers are no different.

3. At Bell Labs I decided to use Ken Thompson’s newly developed Unix operating

system as the basis for a Programmer’s Workbench (PWB), a facility where programmers could

create software. Unix was an ideal environment for such work when enhanced with the set of

tools that we developed. Within Bell Labs, and at a number of other companies, the PWB

became the standard environment for software development at that time. Whether you call this

workspace a programmer’s workbench, a sandbox, or some other name, it is essential to the

software development process. IBM has used the term “sandbox” in a number of depositions

and other documents.

Case 2:03-cv-00294-DAK-BCW Document 1003 Filed 03/20/2007 Page 2 of 9

3

4. Thus, contrary to IBM counsel’s representation, I believe that IBM programmers

for Dynix/ptx and Linux, as well as AIX, used sandboxes, or other similar workspaces or

programming environments, to draft, revise and implement computer software for those systems.

5. If IBM had not adopted and/or developed some type of suitable environment for

their programmers, it would have taken them back to the late 1950’s and early 1960’s and would

have made programming an incredibly inefficient and slow process. This would be like taking a

tractor away from a farmer and giving him a shovel. Even if IBM had tried it, programmers

would have resisted the move.

Information in Programming Environments (e.g. Sandboxes)

6. An adequate programming environment provides a place where all of the basic

functions involved in software development can be performed. This includes the storage space

to keep code, data, documents, and other information. It also includes suitable tools to perform

the functions needed to create a software system. Below is a list of some of the activities

performed in a programming environment or sandbox:

• the creation of design documentation specifying the functionality of each

module, routine, subsystem, etc.;

• the definition of interfaces between software entities including arguments,

parameters, flags, sequencing, etc.;

• the specification of structures, file formats, databases, constants, variables, etc.;

• the approach to be used in the testing each function, subroutine and module;

• the plan for subsystem and system level testing;

• the specific tests to be undertaken, the test scenarios, the test data, etc.;

• the capability to perform such tests in the context of the total system;

Case 2:03-cv-00294-DAK-BCW Document 1003 Filed 03/20/2007 Page 3 of 9

4

• the creation of code modules, the compiling of that code, and the linking of it

together;

• the reasoning, behind algorithms and the motivation behind the various designs;

• all of this documentation for each software entity at each level of abstraction;

and

• suitable backup to protect the system and so that when programmers hit a

roadblock the system can be rolled back to an earlier state and development can

begin again there.

7. In addition to the sandbox or programming environment functionalities

enumerated above, any sizable software development effort requires the use of a

change/version management and control system. The SCCS system developed by Marc

Rochkind is the granddaddy of such systems. Other such systems involved in this case include

CMVC, RCS, CVS, and bitkeeper.
12

 A source code control system is one good source of

information when trying to track a software development effort, and I did a number of searches

of revision control information in these systems. One example of my use of this information is

found paragraph 98 of my expert report where I note that a CMVC entry admits that JFS is

based on System V Unix.

CMVC and Other Such Systems Are Not a Substitute for Programming Environment

Information

8. There are several fundamental flaws in the use a change control system, such as

CMVC or RCS, to track a software development effort. A typical change control system

allows a programmer to “check out” a module, to modify and test it for some unspecified

1
 “What is your preferred revision control system,

http://www.perlmonks.org/?displaytype=print;node_id=394350;replies=1

2
 “ List of Revision Control Software, http://en.wikipedia.org/wiki/List_of_revision_control_software

Case 2:03-cv-00294-DAK-BCW Document 1003 Filed 03/20/2007 Page 4 of 9

5

amount of time, and then when satisfied to “check it back in” to the system. Perhaps this

might be compared to trying to see what is going on in a darkened room with a strobe light.

However, the strobe only illuminates a small part of the room (the code checked in and out)

and the strobe is controlled by a programmer who may or may not want you to see all that is

going on (visibility only at check-in time).

9. For example, let us assume that the programmer is developing a module for

Linux, but is basing it on a module that comes from a contractually-protected operating system

owned by another company. If the only visibility that we have is the module after it has been

appropriately disguised, then tracing the source becomes much more difficult. Perhaps one

could compare this to a body shop for processing stolen cars. It is much easier to prove auto

theft if one can find the body shop being used. After a paint job, changes to upholstery,

options, accessories, and careful modification of the engine and body numbers, it is much more

difficult to identify the theft.

10. It should be noted that a developer’s computer can hold more than one sandbox.

They could be different versions of the same project, or they could be different projects. Take

for example a computer with both an AIX and Linux sandbox. This creates the capability for a

programmer to copy code from one sandbox (that had been checked out from the change

control system) and use it in developing code for another sandbox.

11. Another specific example of valuable information that would have been in a

programming environment or sandbox, but not in a change control system such as CMVC or

RCS, is the timing of access to code files. Most computers, including Unix and Windows,

Case 2:03-cv-00294-DAK-BCW Document 1003 Filed 03/20/2007 Page 5 of 9

6

maintain the last access time of each file they store.
3
 In other words, the computer keeps a

record of the last time a file was viewed. If a file containing AIX or Dynix/ptx code was

viewed in proximity to access to a Linux file, or even after the Linux files were created, that

would cause concern that the AIX files were used to develop the Linux files.

12. The claim that SCO did not need access to the programming

environment/sandbox information because the code was available in CMVC (or RCS) ignores

the following basic problems:

• CMVC and RCS would not show whether code from AIX and Dynix/ptx was

copied, retained, and used by IBM Linux programmers in the development of

IBM contributions to Linux, or what particular code was copied, retained, and

used.

• A programming environment or sandbox is the only place where the progression

of code drafts can be viewed, from the initial version to subsequent versions.

For AIX code, CMVC shows the initial code that was checked out, and the final

code that was checked back in, but not all the steps in between. RCS, the

system on which Dynix/ptx code is saved, shows even less. These intermediate

drafts, – saved only on programmers’ sandboxes or similar workspaces –would

have been important to develop further proof of IBM’s copying.

Importance of Programming Environment Information to SCO/ IBM Case

13. Despite the loss of programming environment and sandbox information through

the destruction initiated by IBM management, we were able to find numerous cases where code

from Dynix/ptx and AIX found its way into IBM’s disclosures to Linux. This effort would have

been significantly easier if the evidence in programming environments and sandboxes had not

been destroyed.

3
 "Unix records three file times in the inode, these are referred to as ctime, mtime, and atime. The ctime

field refers to the time the inode was last changed, mtime refers to the last modification time of the file,

and atime refers to the time the file was last accessed."

http://userpages.umbc.edu/~jack/ifsm498/filesystem.html

Case 2:03-cv-00294-DAK-BCW Document 1003 Filed 03/20/2007 Page 6 of 9

7

14. If I had known which Dynix/ptx and AIX code IBM’s Linux programmers had

retained on their programming environments or sandboxes, I would have compared the

programmers’ Linux disclosures to that code – which would have been easier than trying to

compare the final Linux disclosures to the entire body of AIX and Dynix/ptx code available.

This would have enabled more specific identification of the AIX or Dynix/ptx code on which

the programmers’ Linux disclosures was based

15. If I had access to drafts of programmers’ Linux code from programming

environments and sandboxes that also contained AIX or Dynix/ptx code, I could have

identified even more specifically the copying that occurred.

Case 2:03-cv-00294-DAK-BCW Document 1003 Filed 03/20/2007 Page 7 of 9

Case 2:03-cv-00294-DAK-BCW Document 1003 Filed 03/20/2007 Page 8 of 9

8

CERTIFICATE OF SERVICE

Plaintiff/Counterclaim-Defendant, The SCO Group, Inc., hereby certifies that a true and

correct copy of the foregoing was served on Defendant/Counterclaim-Plaintiff, International

Business Machines Corporation, on this 20th day of March 2007, via CM/ECF to the

following:

David Marriott, Esq. (dmarrriott@cravath.com)

Cravath, Swaine & Moore LLP

Worldwide Plaza

825 Eighth Avenue

New York, New York 10019

Todd Shaughnessy, Esq. (tshaugnessy@swlaw.com)

Snell & Wilmer LLP

1200 Gateway Tower West

15 West South Temple

Salt Lake City, Utah 84101-1004

/s/ Edward Normand

Case 2:03-cv-00294-DAK-BCW Document 1003 Filed 03/20/2007 Page 9 of 9

ljohnson
Text Box

