
<Insert Picture Here>

Nashorn War Stories
(from a battle scarred veteran of invokedynamic)
Marcus Lagergren
Oracle

Marcus Lagergren

Oracle!

THE QUEST FOR DYNAMIC
LANGUAGE PERFORMANCE

ON THE JVM

[NASHORN WAR STORIES]
(from a battle scarred veteran of

invokedynamic)

<Insert Picture Here>

Nashorn War Stories
(from a battle scarred veteran of invokedynamic)
Marcus Lagergren
Oracle

Marcus Lagergren

Oracle!

[NASHORN RANTS]

<Insert Picture Here>

Nashorn War Stories
(from a battle scarred veteran of invokedynamic)
Marcus Lagergren
Oracle

Marcus Lagergren

Oracle!

[JAVASCRIPT RANTS]

The Legal Slide

 "THE FOLLOWING IS INTENDED TO OUTLINE OUR
GENERAL PRODUCT DIRECTION. IT IS INTENDED
FOR INFORMATION PURPOSES ONLY, AND MAY NOT
BE INCORPORATED INTO ANY CONTRACT. IT IS NOT
A COMMITMENT TO DELIVER ANY MATERIAL, CODE,
OR FUNCTIONALITY, AND SHOULD NOT BE RELIED
UPON IN MAKING PURCHASING DECISION. THE
DEVELOPMENT, RELEASE, AND TIMING OF ANY
FEATURES OR FUNCTIONALITY DESCRIBED FOR
ORACLE'S PRODUCTS REMAINS AT THE SOLE
DISCRETION OF ORACLE."

Who am I?

@lagergren

I am here to talk about…

I am here to talk about…

What we’ve suffered through so far to
implement a dynamic language on the JVM

I am here to talk about…

What we’ve suffered through so far to
implement a dynamic language on the JVM

 The Nashorn Project

Also – a parade of JavaScript horrors

Agenda

•  What is Nashorn and why?
•  The problem of compiling an alien language to

Java [sic] bytecode
•  Types
•  Optimistic assumptions

•  The JVM and its issues

What is Nashorn
and why?

What is Nashorn?

•  Nashorn is a 100% pure Java runtime for JavaScript
•  Nashorn generates bytecode

•  Invokedynamics are everywhere
•  Nashorn currently performs somewhere on the order of

~2-10x better than Rhino
•  Nashorn is in JDK 8
•  Nashorn is 100% ECMAScript compliant
•  Nashorn has a well thought through security model

Why Nashorn?

•  Started as an invokedynamic POC.
•  Rhino is still alive today after ~18 years. Why?

•  JSR-223
•  Nashorn is now mature and replaces Rhino for Java 8

Performance

rhino
nashorn

0
1
2

3

4

5

6

7

8

rhino

nashorn

Performance

rhino
nashorn

0
1
2

3

4

5

6

7

8

rhino

nashorn

When is Nashorn available?

•  Nashorn is part of OpenJDK8
•  Already available in JDK 8 builds.

 > jjs

jjs> var x = “hello”;

jjs> print(x);

hello

jjs>

Compiling an alien
language to Java

[sic] bytecode

Compiling an alien (non-Java language) to
bytecode

Compiling an alien (non-Java language) to
bytecode

•  Scala is fairly good fit

Compiling an alien (non-Java language) to
bytecode

•  Scala is fairly good fit
•  Yes I know: hard tail call optimization, interface

injection etc.

Compiling an alien (non-Java language) to
bytecode

•  Scala is fairly good fit
•  Yes I know: hard tail call optimization, interface

injection etc.
•  Ruby and JavaScript are pretty bad fits

Compiling an alien (non-Java language) to
bytecode

•  Scala is fairly good fit
•  Yes I know: hard tail call optimization, interface

injection etc.
•  Ruby and JavaScript are pretty bad fits

•  No types
•  Things change at runtime. A lot.
•  Invokedynamic certainly alleviates a lot of the pain,

but plenty of stuff remains to be solved

JavaScript!

Was it deliberately
designed to make every
efficient representation

useless?

Let’s talk about JavaScript

jjs> Array.prototype[1] = 17;

Let’s talk about JavaScript

jjs> Array.prototype[1] = 17;

17

jjs>

Let’s talk about JavaScript

jjs> Array.prototype[1] = 17;

17

jjs> print([,,,]);

Let’s talk about JavaScript

jjs> Array.prototype[1] = 17;

17

jjs> print([,,,]);

,17,

jjs>

Let’s talk about JavaScript - Numbers

•  Numbers in JavaScript have no fixed ranges
•  “Intish”. “Doublish”.
•  Not very nice for strongly typed bytecode

•  Overflows must be handled
•  Conservative: At least they tend to fit in Java doubles.

Let’s talk about JavaScript - Numbers

•  Double arithmetic is slower than integer arithmetic on

modern HW
•  But double arithmetic is sometimes faster than int

arithmetic with the necessary overflow checks.
•  WAT!
•  (getting back to that)

Let’s talk about JavaScript – Types/Numbers

•  HotSpot itself was originally tested and developed
with bytecode that came from Java

•  Representing everything as Objects to get the
bytecode format type agnostic is nowhere near
viable, performance wise.

•  Boxing
•  Go primitive

We should

•  For bytecode performance we should
•  Use whatever static types we have

•  (mostly) done
•  Optimistically assume stuff about types

•  On it

Let’s talk about JavaScript – Static type info

•  JavaScript type coercion semantics and literals – uses

and definitions
•  That’s all the static type info we’re going to get from the

compiler
•  Java int: statically enough for ~,&,|,^
•  Java double: statically enough for: *,/,-,%
•  Object: binary + and pretty much everything else

Let’s talk about JavaScript – Static type info

•  Callsites, though. How do we deal with parameter types?

int square(int x) {

 return x * x;

}

iload_0

dup

imul

ireturn

Let’s talk about JavaScript – Static type info

•  But…

function square(x) {

 return x * x;

}

jjs> square(2)

4

jjs> square(2.1)

4.41

jjs> square(“a”)

NaN

Let’s talk about JavaScript – Static type info

•  So conservatively…

square(Ljava/lang/Object;)D

 aload_0

 // hopefully just unbox:

 invokestatic coerce2Double(Ljava/lang/Object;)D

 dup

 dmul // returns mul result, so always double

 dreturn

Let’s talk about JavaScript – Static type info

•  Guess again

jjs> square({

 valueOf: function() {

 global++;

 return 2 + global; });

...

Let’s talk about JavaScript – Static type info

•  So conservatively…

square(Ljava/lang/Object;)D

 aload_0

 // hopefully just unbox:

 invokestatic coerce2Double(Ljava/lang/Object;)D

 dup

 dmul // returns mul result, so always double

 dreturn

Let’s talk about JavaScript – Static type info

sigh - well at least the return value HAS to be double

square(Ljava/lang/Object;)D

 aload_0

 invokestatic coerce2Double(Ljava/lang/Object;)D

 aload_0

 invokestatic coerce2Double(Ljava/lang/Object;)D

 dmul // returns mul result, so always double

 dreturn

JavaScript has a lot of magic in its number
coercion

var dict = Object.create(null);

var key = ‘valueOf’;

//later

dict[key] = formatHarddriveFunction;

//much later

dict++;

… and this turns into “10”, of course

++[[]][+[]]+[+[]]
===

“10”

Brendan

Fibbonacci calculator
function fib(_) {

 for(_=[+[],++[[]][+[]],+[],_],_[++[++[++[[]][+[]]]

 [+[]]][+[]]]=(((_[++[++[++[[]][+[]]][+[]]][+[]]]-

 (++[[]][+[]]))&(((--[[]][+[]])>>>(++[[]][+[]]))))

 ===(_[++[++[++[[]][+[]]][+[]]][+[]]]-

 (++[[]][+[]])))?(_[++[++[[]][+[]]][+[]]]=

 ++[[]][+[]],_[++[++[++[[]][+[]]][+[]]][+[]]]-

 (++[[]][+[]])):+[];_[++[++[++[[]][+[]]][+[]]]

 [+[]]]--;_[+[]]=(_[++[[]][+[]]]=

 [++[++[[]][+[]]][+[]]]=[+[]]+_[++[[]][+[]]])-

 _[+[]]);

 return _[++[++[[]][+[]]][+[]]];

}

Callsite specialization

•  We can, and do, use static callsite types though.
•  (ignore int overflows for a bit)

// Even if square is replaced, callsite type is not

// It always takes a number, always returns a number

var a = b * square(17.0);

Callsite specialization

•  We can, and do, use static callsite types though.
•  (ignore int overflows for a bit)

// Even if square is replaced, callsite type is not

// It always takes a number, always returns a number

var a = b * square(17.0);

square(D)D

 dload 0

 dup

 dmul

 dreturn

Callsite specialization

•  We can, and do, use static callsite types though.
•  (ignore int overflows for a bit)

// Even if square is replaced, callsite type is not

// It always takes a number, always returns a number

var a = b * square(17.0);

square = function(x) { return x + “string”; }

 square(D)D

 dload 0

 dup

 dmul

 dreturn

Callsite specialization
square(Ljava/lang/Object;)Ljava/lang/Object;

 aload 0

 ldc “string”

 JS_ADD(Ljava/lang/Object;Ljava/lang/Object);Ljava/lang/Object;

 areturn

Callsite specialization
square(Ljava/lang/Object;)Ljava/lang/Object;

 aload 0

 ldc “string”

 JS_ADD(Ljava/lang/Object;Ljava/lang/Object);Ljava/lang/Object;

 areturn

revert_square(D)D

 dload 0

 coerceToJSObject(D)Ljava/lang/Object; # param filter

 invokedynamic square(Ljava/lang/Object;)Ljava/lang/Object;

 coerceToDouble(Ljava/lang/Object;)D

 dreturn

Callsite specialization
square(Ljava/lang/Object;)Ljava/lang/Object;

 aload 0

 ldc “string”

 JS_ADD(Ljava/lang/Object;Ljava/lang/Object);Ljava/lang/Object;

 areturn

revert_square(D)D

 dload 0

 coerceToJSObject(D)Ljava/lang/Object; # param filter

 invokedynamic square(Ljava/lang/Object;)Ljava/lang/Object;

 coerceToDouble(Ljava/lang/Object;)D

 dreturn

Static compile time types bring us
performance,

[But they are too rare to take us all
the way]

Type Specialization
function am3(i,x,w,j,c,n) {

 var this_array = this.array;

 var w_array = w.array;

 var xl = x&0x3fff, xh = x>>14;

 while(--n >= 0) {

 var l = this_array[i]&0x3fff;

 var h = this_array[i++]>>14;

 var m = xh*l+h*xl;

 l = xl*l+((m&0x3fff)<<14)+w_array[j]+c;

 c = (l>>28)+(m>>14)+xh*h;

 w_array[j++] = l&0xfffffff;

 }

 return c;

}

Type Specialization – Prove ints
function am3(i,x,w,j,c,n) {

 var this_array = this.array;

 var w_array = w.array;

 var xl = x&0x3fff, xh = x>>14;

 while(--n >= 0) {

 var l = this_array[i]&0x3fff;

 var h = this_array[i++]>>14;

 var m = xh*l+h*xl;

 l = xl*l+((m&0x3fff)<<14)+w_array[j]+c;

 c = (l>>28)+(m>>14)+xh*h;

 w_array[j++] = l&0xfffffff;

 }

 return c;

}

Type Specialization – Prove doubles
function am3(i,x,w,j,c,n) {

 var this_array = this.array;

 var w_array = w.array;

 var xl = x&0x3fff, xh = x>>14;

 while(--n >= 0) {

 var l = this_array[i]&0x3fff;

 var h = this_array[i++]>>14;

 var m = xh*l+h*xl;

 l = xl*l+((m&0x3fff)<<14)+w_array[j]+c;

 c = (l>>28)+(m>>14)+xh*h;

 w_array[j++] = l&0xfffffff;

 }

 return c;

}

Static range analysis – fold doubles to ints
function am3(i,x,w,j,c,n) {

 var this_array = this.array;

 var w_array = w.array;

 var xl = x&0x3fff, xh = x>>14; // xl = max 32 bits, xh: 18 bits

 while(--n >= 0) {

 var l = this_array[i]&0x3fff; // l max 12 bits

 var h = this_array[i++]>>14; // h max (32-14) = 18 bits

 var m = xh*l+h*xl; // will never overflow

 l = xl*l+((m&0x3fff)<<14)+w_array[j]+c;

 c = (l>>28)+(m>>14)+xh*h;

 w_array[j++] = l&0xfffffff;

 }

 return c;

}

Static range analysis
function am3(i,x,w,j,c,n) {

 var this_array = this.array;

 var w_array = w.array;

 var xl = x&0x3fff, xh = x>>14; // xl = max 32 bits, xh: 18 bits

 while(--n >= 0) {

 var l = this_array[i]&0x3fff; // l max 12 bits

 var h = this_array[i++]>>14; // h max (32-14) = 18 bits

 var m = xh*l+h*xl; // will never overflow

 l = xl*l+((m&0x3fff)<<14)+w_array[j]+c;

 c = (l>>28)+(m>>14)+xh*h;

 w_array[j++] = l&0xfffffff;

 }

 return c;

}

Do we need our own inlining as well?

Do we need our own inlining as well?

We can statically prove a few primitive numbers from
callsites to am3.

Not from all of them.

Runtime callsite is really:

(Ljava/lang/Object;IILjava/lang/Object;III)I
Statically unprovable, though

Summary – Static analysis

•  Just ignore all primitive types – use boxing everywhere
and axxx instructions

•  Way too slow. The JVM is nowhere near being able to
cope with that amount of boxing, and probably never
will

Summary – Static analysis

•  Just ignore all primitive types – use boxing everywhere
and axxx instructions

•  Way too slow. The JVM is nowhere near being able to
cope with that amount of boxing, and probably never
will

•  Use what primitives we can
•  Definitely gives us performance, depending on the

amount of statically provable primitives

Summary – Static analysis

•  Just ignore all primitive types – use boxing everywhere
and axxx instructions

•  Way too slow. The JVM is nowhere near being able to
cope with that amount of boxing, and probably never
will

•  Use what primitives we can
•  Definitely gives us performance, depending on the

amount of statically provable primitives
•  Add static range checking

•  Gives us another 30% or so

Summary – Static analysis

•  Just ignore all primitive types – use boxing everywhere
and axxx instructions

•  Way too slow. The JVM is nowhere near being able to
cope with that amount of boxing, and probably never
will

•  Use what primitives we can
•  Definitely gives us performance, depending on the

amount of statically provable primitives
•  Add static range checking

•  Gives us another 30% or so
•  Augment CFG with usedef chains to establish param

types

But soon… static analysis won’t get
us further unless we build our own

native JavaScript runtime

But soon… static analysis won’t get
us further unless we build our own

native JavaScript runtime

Become adaptive/dynamic/optimistic

Statically provable callsites for am3

•  (Object, int, Object, Object, double, int, Object)Object

•  (Object, Object, Object, Object, double, int, int)Object

•  (Object, Object, double, Object, double, Object, double)Object

•  (Object, Object, Object, Object, double, int, int)Object

•  (Object, int, int, Object, double, int, Object)Object

•  (Object, int, Object, Object, Object, int, Object)Object

In fact they are…

•  (Object, int, int, Object, int, int, int)Object

•  (Object, int, int, Object, int, int, int)Object

•  (Object, int, int, Object, int, int, int)Object

•  (Object, int, int, Object, int, int, int)Object

•  (Object, int, int, Object, int, int, int)Object

•  (Object, int, int, Object, int, int, int)Object

In fact they are…

•  (Object, int, int, Object, int, int, int)Object

•  (Object, int, int, Object, int, int, int)Object

•  (Object, int, int, Object, int, int, int)Object

•  (Object, int, int, Object, int, int, int)Object

•  (Object, int, int, Object, int, int, int)Object

•  (Object, int, int, Object, int, int, int)Object

•  We know this when linking at runtime

In fact they are…

•  (Object, int, int, Object, int, int, int)Object

•  (Object, int, int, Object, int, int, int)Object

•  (Object, int, int, Object, int, int, int)Object

•  (Object, int, int, Object, int, int, int)Object

•  (Object, int, int, Object, int, int, int)Object

•  (Object, int, int, Object, int, int, int)Object

•  We know this when linking at runtime
•  Use this signature to generate an optimistic version of am3, guard the types
•  Just because it’s int right now, doesn’t mean it’s not undefined later. Guard

required.

In fact they are…

•  (Object, int, int, Object, int, int, int)Object

•  (Object, int, int, Object, int, int, int)Object

•  (Object, int, int, Object, int, int, int)Object

•  (Object, int, int, Object, int, int, int)Object

•  (Object, int, int, Object, int, int, int)Object

•  (Object, int, int, Object, int, int, int)Object

•  We know this when linking at runtime
•  Use this signature to generate an optimistic version of am3, guard the types
•  Just because it’s int right now, doesn’t mean it’s not undefined later. Guard

required.
•  x2 Performance

We really want to use ints where we can

•  x++ pessimistic: x is double (if no static range analysis can prove
otherwise)

•  Having a double as a loop counter is slow
•  Loop unrolling doesn’t work for non integer strides
•  Factor ~50 in improvement if replacing with ints

function f() {

 var x = 0;

 while (x < y) {

 x++;

 }

 return x;

}

We really want to use ints where we can

•  All non-bitwise arithmetic can potentially overflow
•  The + operator is the worst, as it can take any object
•  Experiment: TypeScript frontend

•  A lot more performance with no further mods
•  Nashorn performs well with known primitive int types

function f() {

 var x = 0;

 while (x < y) {

 x++; // dadd? iadd with overflow check?

 }

 return x;

}

Using ints, problem 1 of 2 – Overflow check
overhead

static int addExact(int x, int y) {

 int result = x + y;

 if ((x ^ result) & (y ^ result) < 0) {

 throw new ArithmeticException(“int overflow”)

 }

 return result;

}

function f() {

 var x = 0;

 while (x < y) {

 x = addExact(x, 1);

 }

 return x;

}

This is actually pretty much as slow as the dadd alone
Not sometimes, but often.

Solution: Intrinsify math operations

•  Java 8: addExact/subExact/mulExact
•  Intrinsify them
•  Basically and addExact is just

 add eax, edx

 jo fail

 ret

fail:

 //slow stuff

•  < 10-15% slower than just the iadd when it doesn’t fault
•  Twice the speed of the non-intrinsified version with xors
•  Only slightly faster than dadd, but enables everything

Solution: Intrinsify math operations

This is almost native-fast with add intrinsic and the int
specialization.

function f() {

 var x = 0;

 while (x < y) {

 x = addExact(x, 1);

 }

 return x;

}

iconst_0

istore_0

while:

iload_0

invokedynamic get y()I

if_icmpge exit

iload_0

iconst_1

invokestatic addExact //intrinsic

goto while

exit:

istore_0

ireturn

(One more optimization: is y loop invariant? It may be a
getter with side effects or anything as this is JavaScript
hell… Hotspot won’t be able to tell with the indy)

function f() {

 var x = 0;

 while (x < y) {

 x = addExact(x, 1);

 }

 return x;

}

iconst_0

istore_0

invokedynamic get y()I //check primitive

istore_1

while:

iload_0

iload_1 // y

if_icmpge exit

iload_0

iconst_1

invokestatic addExact //intrinsic

goto while

exit:

istore_0

ireturn

Native-fast

iconst_0

istore_0

invokedynamic get y()I //check primitive

istore_1

while:

iload_0

iload_1 // y

if_icmpge exit

iload_0

iconst_1

invokestatic addExact //intrinsic

goto while

exit:

istore_0

ireturn

We really want to use ints where we can

Very common instance of same problem.

function f() {

 return 17 + array[3];

}

 ...

 bipush 17

 aload 2 //scope

 invokedynamic get:array(Ljava/lang/Object;)Ljava/lang/Object;

 aload 2

 iconst_3

 invokedynamic getElem(Ljava/lang/Object;I)Ljava/lang/Object;

 invokedynamic ADD:OIO_I(ILjava/lang/Object;)Ljava/lang/Object;

 areturn

We really want to use ints where we can

Very common instance of same problem.

function f() {

 return 17 + array[3];

}

 ...

 bipush 17

 aload 2 //scope

 invokedynamic get:array(Ljava/lang/Object;)Ljava/lang/Object;

 aload 2

 iconst_3

 invokedynamic getElem(Ljava/lang/Object;I)I

 invokestatic Math.addExact

 ireturn

Using ints problem 2 of 2 – erroneous
assumptions

•  So what do we do if we overflow or miss an assumption?
•  Bytecode is strongly typed, so we can’t reuse the same

code
•  Throw errors or add guards/version code

•  So what do we do if we overflow or miss an assumption?
•  Bytecode is strongly typed, so we can’t reuse the same

code
•  Throw errors or add guards/version code

if (x < y) {

 x &= 1;

 if (x < 2) {

 x *= 2;

 if (k) {

 x += “string”

 //keep branching

 }

 }

}

return x; //hope this is an int

Using ints problem 2 of 2 – erroneous
assumptions

So add a catch block, take a
continuation and jump to a less
specialized version of the code

So add a catch block, take a
continuation and jump to a less
specialized version of the code

Uh-oh…

Continuations, you say?

Start out with

...

ALOAD w_array

ILOAD j

INVOKEDYNAMIC dyn:getElem(I)I

...

IADD

...

Continuations, you say?

Mark callsite optimistic, tag it with a program point

...

ALOAD w_array

ILOAD j

INVOKEDYNAMIC dyn:getElem(I)I [optimistic | pp 17]

...

IADD

...

Continuations, you say?

Add a return value filter throwing an Exception
if we return a non-int type

public class UnwarrantedOptimismException extends Exception {

 ...

 public int getProgramRestartPointId() { ... };

 public Object getReturnedValue() { ... };

}

Continuations, you say?

Send a message to the caller to regenerate the method

try {

 ...

 ALOAD w_array

 ILOAD j

 // make sure bc stack is written to locals

 INVOKEDYNAMIC dyn:getElem(I)I [optimistic | pp 17]

 ...

 IADD

 ...

} catch (UnwarrantedOptimismException e) {

 // ask linker to regenerate method

 throw new RewriteException(e.getId(), e.getReturnValue(), locals);

}

Continuations, you say?

•  We know when we are relinking a rewritable method
•  Add a MethodHandles.catchException for

RewriteException

•  Catch triggers recompilation, with the failed callsite made
more pessimistic.

•  Also generates and invokes a “rest of” method
restOfMethod(RewriteException e) {

 // store to locals e.getLocals();

 // ...

 // all code after invokedynamic that failed with

 // maximum pessimism

 // (can never throw UnwarrantedOptimismException)

 return pessimisticReturnValue;

}

The JVM situation

JVM issues

•  Java 7
•  Pretty quickly started giving us the infamous
NoClassDefFoundError bug

•  Circumvented by running with everything in
bootclasspath (Eww…)

•  Java 8
•  A lot of C++ was reimplemented as LambdaForms
•  Initially, 10% of Java 7 performance. L

print(Math.round(0.5));

WTF?

JVM issues

JVM issues

•  Many inlining problems
•  Even, traditionally, for normal Java code – add a code

line, 50% of performance disappears
•  Seen that from time to time with HotSpot
•  Relevant in our quick paths in Nashorn too

•  LambdaForms & MethodHandles
•  Tremendous pressure on inlining, lambda form

classes also on metaspace
•  Discovered a few very old bugs in C2 inliner

•  E.g: dead nodes counted as size.

JVM issues

JVM issues

JVM issues

•  LambdaForms compile a lot of code, generate a lot of
metaspace stress

•  If we have to have LambdaForms, they might not be able
to remain in bytecode land?

•  Inlining, despite tweaking has a lot of problems that
remain to be solved

•  Boxing removal boxing removal boxing removal
•  (probably enabled by local escape analysis)

JVM issues

•  MethodHandle.invoke (not exact) is slow
public class Test {

 private final static MethodHandle CALC =

 MethodHandles.publicLookup().findStatic(

 Test.class, "calc", int.class, int.class, Object.class);

 static int test() throws Throwable {

 MethodHandle mh = CALC;

 Object aString = "A";

 int a = mh.invoke(1, aString);

 int b = mh.invoke(2, "B");

 Integer c = mh.invoke((Integer)3, 3);

 return a+b+c;

 }

 static int calc(int x, Object o) {

 return x + o.hashCode();

 }

}

JVM issues

•  MethodHandle.invoke (not exact) is slow
public class Test {

 private final static MethodHandle CALC =

 MethodHandles.publicLookup().findStatic(

 Test.class, "calc", int.class, int.class, Object.class);

 static int test() throws Throwable {

 return 140;

 }

 static int calc(int x, Object o) {

 return x + o.hashCode();

 }

}

JVM issues

•  Still artifacts here. We do ugly stuff in Java like

 @Override

 public long getLong(final long key) {

 final int index = ArrayIndex.getArrayIndex(key);

 final ArrayData array = getArray();

 if (array.has(index)) {

 return array.getLong(index);

 }

 return getLong(index, convertKey(key));

}

JVM issues

•  Still artifacts here. We do ugly stuff in Java like

 @Override

 public long getLong(final double key) {

 final int index = ArrayIndex.getArrayIndex(key);

 final ArrayData array = getArray();

 if (array.has(index)) {

 return array.getLong(index);

 }

 return getLong(index, convertKey(key));

}

JVM issues

•  Still artifacts here. We do ugly stuff in Java like

 @Override

 public long getLong(final Object key) {

 final int index = ArrayIndex.getArrayIndex(key);

 final ArrayData array = getArray();

 if (array.has(index)) {

 return array.getLong(index);

 }

 return getLong(index, convertKey(key));

 }

JVM issues

•  Still artifacts here. We do ugly stuff in Java like

 @Override

 public long getLong(final int key) {

 final ArrayData array = getArray();

 if (array.has(key)) {

 return array.getLong(key);

 }

 return getLong(key, convertKey(key));

 }

War story: warmup

•  Indy intrinsically needs bootstrapping
•  Every call site contributes to warmup
•  LambdaForms contribute to warmup
•  Tiered compilation has gone back and forth.

•  Peak performance is reached sooner, even without
C2 compiling all the methods

•  Added deviation has been very large
•  C2 is slow

Another war story: Metaspace

•  Runtime didn’t know about anonymous classes
•  Build b58-b74 were broken L
•  Compressed klass pointers gave us a fixed size 100 MB

default klass pointer chunk L
•  Metaspace allocated from metaspace pool subject to

fragmentation. Chunks went 5% full to different
classloaders

•  HotSpot did not hand back dealloced Metaspace
memory to the OS

Future work – Nashorn

•  Optimistic code everywhere
•  Static analysis/IR
•  Field representations

•  Objects only, dual fields, sun.misc.TaggedArray
(TaggedObject?)

•  Parallelism

Future work - JVM

•  Boxing removal (probably requires Local EA)
•  sun.misc.TaggedArray?
•  Intrinsify Math.addExact and friends

•  Done!
•  MethodHandle.invoke must be fast
•  LambdaForms

•  Caching for footprint?
•  Replacing LambdaForms with something else?

•  Get them out of class/bytecode land

Future work - JVM

•  Is bytecode even the correct format to do this entire in
•  Pluggable frontends?
•  More magic: I probably really need to talk to my

compiler
•  Or have my compiler talk to me

Nashorn current performance status

•  (Very) initial POC after 2.5 weeks of work:
•  Broke out octane.crypto.am3 – the hotspot in

the Crypto benchmark in octane.
•  Turned it into microbenchmark

Nashorn current performance status

•  Runtime

•  Rhino (with –opt 9): 34.6 s
•  Nashorn tip: 10.8 s
•  V8 1.3 s

Nashorn with optimistic types

•  Runtime

•  Rhino (with –opt 9): 34.6 s
•  Nashorn tip: 5.8 s
•  V8 1.3 s

Add JVM math intrinsics…

•  Runtime

•  Rhino (with –opt 9): 34.6 s
•  Nashorn tip: 4.4 s
•  V8 1.3 s

Patch JVM to keep more type info while
inlining…

•  Runtime

•  Rhino (with –opt 9): 34.6 s
•  Nashorn tip: 2.5 s
•  V8 1.3 s

Talk to us

•  Tweet us: @lagergren, @wickund, @asz,
@hannesw, @sundararajan_a

•  http://blogs.oracle.com/nashorn

•  nashorn-dev@openjdk.java.net
•  mlvm-dev@openjdk.java.net

Thank you!

Q&A?
@lagergren

