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ABSTRACT 
Governments and commercial institutions have conducted 
detailed time-use studies for several decades.  In these 
studies, participants give a detailed record of their activities, 
locations, and other data over a day, week, or longer period. 
These studies are particularly valuable for the ubicomp 
community because of the large number of participants 
(often the tens of thousands), and because of their public 
availability.  In this paper, we show how to use the data 
from these studies to provide validated and cheap (although 
noisy) classifiers, baseline metrics, and other benefits for 
activity inference applications. 

Author Keywords 
Time-use studies, diary studies, activity inference, 
evaluation methodologies, ubiquitous computing, mobile 
computing. 

ACM Classification Keywords 
H.1.m. Models and Principles: Miscellaneous.  

INTRODUCTION 
Ubiquitous computing has directed much research attention 
lately toward inference of everyday human activities 
[2,11,13,20,1,10,19]. Activity inference is a subproblem 
common to many applications in areas like health 
monitoring [20], information delivery [2], and 
transportation prediction [9]. It also shows promise for 
many more applications that benefit from accurate user 
models, such as helping people understand how they spend 
their time, providing ethnographers with more data to help 
them better understand human behaviors, and supplying 
epidemiologists with information that helps them 
understand the relationship between behavior and health. 

A common way that researchers build an activity inference 
system is to collect sensor readings and ground truth 
activity data in a user experiment, and then use that data to 
build an activity classifier. One challenge with this 
approach is the effort and expense of collecting enough 
realistic data. Laboratory experiments can produce activity-
specific data, but the data may be biased by the artificial 
setting. Deployed systems are more realistic, but require 
more robust engineering and longer experiment running 
times to observe infrequent activities. A recently deployed 
indoor system [12] reported that in 104 observed hours of a 
single participant, a couple activities were observed for less 
than a minute each. Much more observation time would be 
necessary to draw statistically significant conclusions.  

A second challenge of data collection is the difficulty of 
comprehensive coverage. Some activity inference 
applications—such as health monitoring and time 
accounting—require that everyday life be monitored 
continuously and ubiquitously. Mobile devices would seem 
to address this issue, but they are often carried in ways that 
limit their sensing capabilities, and often not even carried at 
all [17]. 

Fortunately, governments and other large institutions have 
been collecting large amounts of coded activity data for 
decades.  These time-use studies list all activities performed 
by each participant over a 24 hour period (or more). Among 
other uses, the data is collected to inform significant 
commercial, political, and economic decisions. Large 
studies contain tens or hundreds of thousands of 
participants, and cost millions of dollars. Some of these 
data sets are available to the public for free. 

Time-use studies hold considerable value for ubicomp 
systems and applications. Among their uses: 

1. Construct Activity Classifiers. Activity data in 
time-use studies are linked to other variables such 
time of day, day of week, participant 
demographics, copresent individuals, and, in some 
cases, location and emotion. These variables can 
be treated as features for a classifier that is cheap 
to build and covers a broad class of activities. 
Although time-use data differs in resolution and 
coverage from sensor data, these two data types 
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can be combined, for example, in a system that 
uses Bayesian methods. 

2. Estimate Which Features Predict Best. Time use 
data can help determine the relative value of 
demographics, location, time, and previous activity 
in making activity predictions either in general or 
for specific activities of interest. Knowing this 
helps system designers determine the features they 
need to achieve a minimum prediction accuracy.  

3. Inform Understanding about Simultaneous 
Activities. Time use studies can confirm recent 
observations from ubicomp studies such as [12] 
about which activities happen simultaneously.  

4. Identify Circumstances for Rare Activities. If a 
new study is designed to collect more information 
about rare activities, time-use data can identify the 
situations in which such activities are most likely 
to happen, thereby minimizing data collection 
expense. 

5. Validate Study Sites. For a detailed study at a 
single location, time-use data can validate that the 
general activities at the site approximate 
population norms. This validation supports the 
generalization of the study’s findings to other sites. 

6. Provide Field-Tested Activity and Location 
Taxonomies. Longer-running studies have refined 
their activity and location taxonomies in reaction 
to the millions of activity records they have 
collected. Such classifications are more likely to 
be complete and unambiguous than taxonomies 
created for a new ubicomp activity study.  

This paper contributes to the first three uses of time-use 
data for ubiquitous computing. After presenting an 
introduction to time-use studies, it analyzes how well a 
recent time-use study predicts activity using time, location, 
demographics, and previous activity. The paper then 
examines how activity predictability varies at different 
locations, and for different activities. Finally, it gives an 
example of how time-use study analysis can easily calculate 
statistics about simultaneous activities that are much more 
expensive to collect in an instrumented environment. 

RELATED WORK  
Other ubicomp research has utilized large data sources. 
Closest to our approach is Predestination [9], which uses 
land-use data from the United States Geological Survey and 
the National Household Transportation Survey to better 
predict destination places. Time-use data covers the entire 
day, not just transportation episodes, so it can benefit a 
broader class of applications. Also, better modeling of 
activities can lead to better prediction of trips, as suggested 
by a popular research direction in the transportation 
modeling field [14]. 

Much recent research has studied the effectiveness of 
particular sensor types for determining activities [12,20]. 
Our approach instead starts from available large-scale 
authoritative data and the contextual variables they contain. 
Time-use studies do not have the same detail as sensor-
based studies, and are biased by participants’ self-reported 
interpretations, but because these studies include far more 
participants, they are less biased by individual differences 
and more likely to cover rare activities well. Logan 
specifically cites small numbers of episodes for certain 
activities as a significant problem for (home) activity 
recognition systems [12]. 

LifeNet [16,24] and Pentney et al. [19] also use a large, 
general data set to study how contextual variables might 
influence activity. But rather than using diary data, these 
projects start from tens of thousands of interrelated 
common-sense logical statements, and derive conclusions 
from reasoning over these statements. We view this 
approach as complementary to ours. Conclusions from 
common sense databases may be affected by biases in the 
database statements, and conclusions from time-use studies 
may be biased by the way activity is coded.  

TIME-USE STUDIES 
Table 1 shows an excerpt of time-use data from the 
American Time-Use Survey (ATUS).  ATUS is the largest, 
most recent time-use study in the United States, and is run 
by the Bureau of Labor Statistics. Its purpose is to estimate 
work not included in economics measures (e.g., home 
childcare). ATUS codes activities hierarchically into three 
tiers of differing granularity that contain 18, 110, and 462 
activity codes [22]. Location is coded more simply, as a 27-
valued symbolic variable (see Figure 4 for a subset of the 

RESPID TIME ACTIVITY (TIER 3) LOCATION 

20060101060033 07:00 - 07:20 Physical care for hh children Respondents home or yard 
20060101060033 07:20 - 09:20 Playing with hh children, not sports Respondents home or yard 
20060101060033 09:20 - 10:20 Physical care for hh children Respondents home or yard 
20060101060033 10:20 - 10:30 Travel related to grocery shopping Car, truck, or motorcycle (driver) 
20060101060033 10:30 - 11:30 Grocery shopping Grocery store 
20060101060033 12:40 - 12:50 Travel related to grocery shopping Car, truck, or motorcycle (driver) 
20060101060033 12:50 - 13:10 Physical care for hh children Respondents home or yard 

Table 1: Seven of the 263,286 activity episodes collected from 12,943 households in the 2006 American Time-Use Study (ATUS). 
“hh” abbreviates “household.” Other variables (not shown) include demographics, family demographics, employment, 
simultaneous child care, and copresent individuals. 



location codes). Figure 1 shows the overall proportions of 
time spent in each of the 18 Tier 1 activity codes, and 
Figure 2 gives examples of codes in the different Tiers. 

In addition to ATUS, many other time-use studies have 
been conducted for many different purposes. Some of the 
more common motives are to quantify unpaid work, study 
how behaviors vary by demographic, measure exposure to 
environmental pollutants, report on the activities parents do 
with children, and investigate how people spend leisure 
time. Studies also vary by their duration (24 hours or more), 
season (year round or all on one day), data collection 
method (interview or questionnaire), response rates (e.g., 
55.1% for ATUS vs. 94.7% for a recent Korean study [23]), 
number of participants (e.g., over 200,000 in a Japanese 
study), activity coding (categorical or free text [8], single 
activity or multiple), additional questions (e.g., pollutant 
exposure), reporting method (activity episodes or time per 
activity per participant), and data availability (public or 

restricted).  The Centre for Time Use Research maintains a 
long list of such studies from over eighty countries at 
www.timeuse.org [4]. 

There have been several efforts to unify different time-use 
study data sets under a common format that simplifies data 
access and analysis. For the United States, the American 
Heritage Time Use Study (AHTUS) combines data from 
ATUS and four older American studies. The Harmonized 
European Time Use Study (HETUS) currently unifies data 
from fifteen European countries. AHTUS data is publicly 
available. HETUS data is restricted, but does publish 
several charts similar to Figure 1. 

The largest effort to unify time-use data is the Multinational 
Time Use Study (MTUS). Started in the early 1980s, 
MTUS now combines data from over 50 datasets from 19 
countries. It includes records from over 300,000 
participants. Access to summary data (time per participant 
per activity) is available to anyone, but access to episode 
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Figure 1: Estimate of US population performing each ATUS Tier 1 activity by time of day (from ATUS 2006). Finer coding is 
available in other Tiers. Jagged edges reflect biases toward reporting activities on hour and half-hour boundaries.  

Persona l Care  
Household Activities  
Caring For & Helping Household Members  
Caring For & Helping NonHH Members  
Work & Work-Rela ted Activities
Education  
Consumer Purchases  
Professiona l & Personal Care Services  
…

Sleeping
Grooming
Health-related Self Care
Personal Activities
PersonalCare Emergencies
PersonalCare, n.e.c

Housework
…

Sleeping
Sleeplessness
Sleeping, n.e.c.

Interior cleaning
Laundry
Sewing, repa iring, & mainta ining textiles
Storing interior hh items, inc. food
Housework, n.e.c.

Examples of 
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Tier 2 Activities

Examples of 
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Figure 2: Examples from ATUS’s activity classification. There are 18 Tier 1 activities (see Figure 1 for the complete list), 110 
Tier 2 activities, and 462 Tier 3 activities.  Tier 2 and Tier 3 activities are hierarchically grouped under activities in the preceding 
Tier.  “n.e.c.” stands for “not elsewhere classified.” 



 

data requires separate permission, in some cases from the 
supplier of the data. 

The time-use research field is older than ubiquitous 
computing. The International Association of Time-Use 
Research (IATUR) will hold its 30th conference in 2008. 
Publications span a variety of topics, including analysis 
techniques, trends, and subgroup comparisons.  

While time-use studies can provide a lot of useful data, they 
are not problem-free.  One of the most critical questions 
concerns data quality. A participant must consciously recall 
every activity episode and its details, and communicate the 
activity accurately to the interviewer. Depending on his or 
her impressions of the interviewer and beliefs about how 
the data may be used, the participant may describe activities 
differently from how they happened, choose to report false 
activities, or omit some activities. For activities that are 
reported, the interviewer must judge which code most 
closely matches the participant’s description. In some cases, 
a description might have more than one possible coding. Or 
there may be multiple activities, and the interviewer must 
choose the most important [21]. Some studies use multiple 
coders to reduce individual coding biases. 

Smaller studies have explored alternative methods, such as 
the Experience Sampling Method (ESM) [3], telephone-
based sampling at random times, and direct observation.  
Efforts to measure validity of the different approaches have 
shown that correlations between diaries and ESM, and 
random hour questioning vary between about 70% and 80% 
[21] (p. 82). 

This paper only examines results from American studies 
because these data are easily downloadable and contain full 
activity episodes. To our knowledge, most other studies 
either restrict access or publish only summary statistics, not 
individual activity episodes. 

For more information about time-use studies in general, see 
Pentland, et al. [18] and Michelson [15].   

SUITABILITY OF TIME-USE DATA FOR UBICOMP 
Like activity data collected from ubicomp studies, time-use 
study data records activities as a function of time, place, 
and demographic data. But there are differences. Activities 
in a time-use study may last a couple hours, whereas an 
activity in a sensor-driven study often lasts between an 
instant to tens of minutes. Also, time-use studies usually 
cover all activities in an entire day, whereas ubicomp 
studies may focus on a limited domain, such as physical 
motion, in-home activities of daily living, or mechanical 
repair. Finally, all data in a time-use study is cognitively 
processed by the study participant, and, in many studies, 
also by an interviewer. Data in ubicomp studies comes from 
sensors. 

These three differences, the “duration difference,” the 
“domain specificity difference,” and the “cognitive 
interpretation difference” may cast doubt on the 

appropriateness of time-use study data for ubicomp 
systems. We now argue that despite these issues, time-use 
data offer important benefits.   

The duration difference arises because participants have 
only so much patience for reporting their activities.  When 
asked to give a detailed account of what they did, 
participants may combine many short activities into a 
single, longer, more abstract one. “Scooping granola, 
pouring milk, lifting spoon, …” becomes “eating 
breakfast.” While the former activities may be easier for 
sensors to detect, the latter expression more closely matches 
how a person would communicate the morning’s events, 
unless something unusual happened during the “eating 
breakfast” routine. Because of their coarser granularity, 
time-use studies cannot predict activities at the detail they 
are sensed, but they can bias predictions toward more likely 
activities. 

The domain specificity difference results from the effort 
required to bring together data from various sensors and 
sensor types in different domains, and to associate all the 
collected data with the same individual. Some application-
driven activity-inference projects avoid facing these 
problems by working on a domain-specific application 
(e.g., bicycle repair). Today, general time-use data is of 
limited use for these applications. However, we believe that 
systems can benefit from cross-domain inferences (e.g., 
purchasing a tire at a bicycle shop may suggest a particular 
bicycle repair later), and that the cross-domain platforms 
that make such systems possible will benefit from broad 
time-use data. 

Finally, the cognitive interpretation difference causes 
inaccuracies through misunderstandings. However, 
cognitive interpretation can also enable data collection of 
privacy-sensitive activities, such as bathroom use. 
Participants may feel more comfortable describing these 
activities than having them sensed and recorded. Time-use 
studies may therefore contain more accurate data about 
these activities than can be collected from sensors. 

INFERRING ACTIVITY FROM CONTEXT 
How accurately can activity be inferred by time-use study 
data? We investigate this question by using the activity 
distributions in the ATUS data to construct maximum-
likelihood classifiers.  That is, given input variables v1..n , 
the classifier infers the activity a that maximizes the 
conditional probability Pr(a | v1, v2, … vn).  We compute the 
full joint conditional probabilities for our analysis. 

The input variables we consider are hour of day, day of 
week, sex, age group, previous activity, and location. To 
simplify analysis, where necessary we limit the range of 
input variable values to a small discrete set. That is, we use 
hour instead of time to the minute, and age in groups of five 
years instead of by year. Because each input variable can 
only take one of a few values, and because of the large 
number of activity episodes, it is possible to calculate 



maximum-likelihood estimates over joint distributions that 
have hundreds to tens of thousands of activity episodes for 
the most likely activity.  

We evaluate two kinds of classifiers, an “Unweighted 
Classifier” and a “Duration-Weighted Classifier”. In the 
Unweighted Classifier, each activity episode has equal 
influence regardless of its duration. It favors shorter 
activities that happen more often (such as “Telephone 
Calls”) over longer activities that happen less frequently 
(such as “Sleeping”). An Unweighted Classifier is 
appropriate if classifications are made a fixed number of 
times per activity. For example, a classifier that ran with 
every location change would perform approximately like an 
Unweighted Classifier.  

The Duration-Weighted Classifier multiplies each activity 
episode by its duration before computing the activity 
distribution. The Duration-Weighted Classifier is more 
appropriate if classifications are made independently of 
activity duration, such as on an hourly basis. 

ATUS codes the location of three activities (sleeping, 
grooming, and sexual activities) as “Not Specified” to 
protect respondent privacy. Since these activities account 
for 99% of activities at the “Not Specified” location, a 
classifier using the ATUS location code shows an 
unrealistic ability to distinguish them from other in-home 
activities. We therefore recode these activities as though 
they happened in the respondent’s home. Although some of 
these activities likely happen elsewhere, we believe that the 
classifier accuracy figures are more accurate with this 
recode than without. Also, ATUS codes each type of 
transportation as a separate location (e.g., “Bus,” “Bicycle,” 
“Boat,” etc.). For simplicity, we have combined these 
locations together into a single “Transportation” location. 

Overall Accuracy 
Figure 3 summarizes the overall results for both the 
Unweighted and Duration-Weighted Classifiers. The x-axis 
measures the percentage of time that activities are correctly 
inferred (the true positive rate). All figures are calculated 
using tenfold cross-validation. 

The y-axis splits the classifiers into five groups. Each group 
contains a different combination of input variables. Each 
bar shows the accuracy for a classifier for Tier 1, Tier 2, 
and Tier 3 activities. Because a lower-numbered Tier need 
distinguish among fewer activities, it always classifies more 
accurately than a higher Tier.  

The first classifier group, “None,” shows the base accuracy 
using no contextual variables. In the absence of context, the 
maximum-likelihood activity in the ATUS dataset is 
“Personal care” (Tier 1) and “Sleeping” (Tiers 2 and 3). 
Tiers 2 and 3 predict less accurately because “Personal 
care” covers several other categories that take much less 
time overall (see Figure 2). Note how the difference is 
much smaller in the Duration-Weighted Classifier because 
“Sleeping” has a proportionally larger effect than the other 
activities. 

The next group of three classifiers uses knowledge of the 
immediately preceding Tier 1 activity to compute the next 
activity. Because any real system cannot know the previous 
activity with certainty, these results give an upper bound on 
the expected true results. We also assume that the first 
activity of the day is preceded by itself (because ATUS 
contains no data for these cases). Unsurprisingly, these 
classifiers perform noticeably better than the uninformed 
“None” classifier.  

“Hour of day” gives a small improvement in performance 
over “Previous activity.” “Hour of day” is more reliably 
sensed then “Previous activity,” so these figures should be 
obtainable in practice. This classifier is most accurate 
during the night when “Sleeping” is by far the most 
common activity. 

Location clearly adds the most predictive power, especially 
for the Unweighted Classifier. However, it is still possible 
to do better by adding “Hour of day” and “Previous 
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Figure 3: Percentage of activities inferred correctly in the 
ATUS dataset according to various contextual variables and 
Tiers. Location is the most informative variable, but higher 
accuracies are possible by using hour of day and the previous 
activity. 

 



 

Activity.” Adding “Day of Week” and “Age Group” (not 
shown in the figure) has minimal effects, less than 0.5%.  

Also not shown in the figure are our experiments with these 
classifiers augmented with the Sex of the participant. 
Improvements here also made less than 0.5% difference. 
Note also that although these low-effect variables (“Sex,” 
“Day of week,” and “Age Group”) do not affect the 
maximum-likelihood results much, they do alter the activity 
distribution, so a Bayesian estimator may benefit from their 
inclusion. 

The Unweighted Classifier performs worse than the 
Duration-Weighted Classifier. We believe this result arises 
because in the Unweighted Classifier, “Sleeping” is treated 
as one of many activities. But in the Duration-Weighted 
classifier, correctly predicting it (which, as Table 3 shows, 
all classifiers generally do) accounts for several hours of the 
day and therefore a large fraction of the performance. 

Note that the Unweighted Classifiers using Location have 
wider “Tier 1” bars than the other Unweighted Classifiers. 
This indicates that a classifier using Location gets many 
Tier 1 activities correct but fails to distinguish the proper 
Tier 2 or Tier 3 activity. This effect arises mainly because 
the “Transportation” location predicts the Tier 1 
“Traveling” code well, but does not distinguish among the 
reasons for traveling, which are included in the Tier 2 codes 
(e.g., “Travel Related to Personal Care,” “Travel Related to 
Household Activities,” etc.).  

In summary, these results indicate that hour of day, 
previous activity, and location all predict activity better 
than a fixed-activity classifier. Time is easy to sense, which 
makes it particularly useful. Combining previous activities 

with time is even more accurate. However if location is 
available, then it provides the best clues about activity. 
Note that this is true only when location is accurate and is 
properly interpreted for a particular individual. What is one 
person’s coffee shop is someone else’s workplace. 

Activity Inference Accuracy, by Location 
Although a classifier that uses location performs better than 
classifiers using other variables, it is far from perfect. It 
never does better than 80%. Figure 4 shows that in fact 
accuracy ranges from above 95% down to around 15%, 
depending on location and Tier.  

Unsurprisingly, prediction is best in cases where location 
suggests a particular activity. The most common activity at 
a grocery store is “consumer purchase.” At 
“transportation,” it’s “traveling.” Workplace is “work;” 
Gym is “sports;” other store, “consumer purchase;” and 
bank, “professional services.” “Unspecified place” is 
mostly “sports” (coded as “Walking” below Tier 1), and 
“restaurant/bar” is mostly “eating.” These places are either 
designed for commercial transactions, employment, or 
transportation. 

Interestingly, however, there is a class of locations that do 
not predict activity well, and at which multiple activities 
often occur.  Generally speaking, these locations are public 
facilities (school, library, post offices, and outdoors), 
churches, and homes. An activity-inference system should 

Activity (Respondent’s Home) Percent 

Sleeping 58.5% 

Television and movies (not religious) 12.8% 

Washing, dressing and grooming oneself 3.4% 

Eating and drinking 3.4% 

Food and drink preparation  2.0% 

Interior cleaning 1.9% 

Reading for personal interest 1.8% 

Socializing and communicating with others 1.4% 

Relaxing, thinking  1.3% 

Work, main job 1.1%  

Other 12.4% 

 

Activity (Someone else’s home) Percent 

Socializing and communicating with others 38.8% 

Television and movies (not religious) 12.7% 

Eating and drinking 7.4% 

Playing games 5.5% 

Attending or hosting parties/receptions/ceremonies 5.2% 

House & lawn maintenance & repair assistance for  2.8% 

    non-household adults  

Work, main job 1.7% 

Housework, cooking, & shopping assistance for 1.5% 

    non-household adults  

Relaxing, thinking  1.5% 

Food and drink preparation  1.3%  

Other 21.6% 

 

Table 2: Breakdown of the time spent in the top ten Tier 3 
activities at “Respondent’s Home” and “Someone Else’s 
Home.” The set of activities suggests that location within the 
home will partially, but not completely, predict activity.  
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Figure 4: Percentage of ATUS activities inferred correctly, 
based only on location, for different locations and Tiers. 



not expect to be able to accurately infer activity in these 
places using building-level location alone. Figure 4 shows 
that this is true even for the coarse, 18-activity Tier 1 
classification. 

This result raises a question: Is poor prediction of these 
activities an artifact of the coarse location taxonomy?  
Would a finer location classification—say, that included 
indoors—predict activity better? Or is location not enough 
to predict activity in these cases? ATUS does not contain 
the data to make a quantitative conclusion, but it does offer 
some insights through the distribution of activities at these 
locations.   

For example, Table 2 shows the most likely Tier 3 activities 
when the respondent was at their home and when at 
someone else’s home. Although the locations of the listed 
activities are not known, it is apparent that some of them 
happen in different locations (e.g., “Television and movies” 
and “Food and drink preparation”) whereas others are more 
likely to overlap in even the most precisely measured 
location (e.g., “Reading for personal interest” and 
“Relaxing, thinking”). We can state that for homes, better 
location fidelity will help improve activity predictability, 
but not for all activities. A similar analysis could be 
performed for other locations. 

As an aside, Table 2 also shows how activities are affected 
not only by the type of building, but also by a person’s role 
within it. We can see, for example, that sleeping is much 
more common in one’s own home than in another’s, where 
socializing is the most common activity. Again, the 
activities on this list are not surprising, but the list is useful 
for a system designer who might otherwise forget an 
important activity.   

This kind of data is especially time-consuming to collect 
through instrumentation, because social events may be less 
frequent than other activities. Furthermore, getting a 
representative sample of activities may depend on the 
individuals present, their social relationships, and the 
occasion. It is much faster to reuse a large, already-
collected data set.  

Finally, observe that Figure 4 also shows that at some 
locations there are great differences in predictability 
between Tiers. This provides another perspective on the 
effect seen above in Figure 3, namely that some locations 
strongly predict a single, popular activity at a lower-
numbered Tier, but weakly select among a higher-entropy 
set of activities at a higher-numbered Tier. These 
breakdowns are artifacts of the activity taxonomy; a 
different taxonomy, for example, might break down 
workplace activities, thereby reducing predictability at a 
higher Tier for “Respondent’s workplace.”  

Activity Inference Accuracy for Different Activities 
We study next the accuracy with which specific activities 
can be inferred. We use the same maximum-likelihood 
classifiers based on contextual variables as described above. 

For a given activity (say, personal care), we measure the 
fraction of instances of that activity that are correctly 
classified (the Recall), and the fraction of activities given 
that label that are labeled correctly (the Precision). 
Naturally, high Recall and Precision are desirable. Our 
measures again use tenfold cross-validation.  

Other researchers measure the area under an ROC curve to 
compare activities [5,12]. We only report the Recall and 
Precision for the single point on the ROC curve determined 
by the maximum-likelihood classifier. Since this classifier 
outputs only the most likely activity, there is no meaningful 
parameterization for producing a ROC curve. The results 
for Tier 1 are given in Table 3. To facilitate calibration and 
interpretation of our results, the table also shows the 
average time spent per day on each activity.  

The results show large differences in predictability among 
the activities. Consider the classifier based on location 
alone. Table 3 reveals that while some activities (e.g., 
“Personal care”) are predicted very accurately from 
location, the classifier fails to predict other activities (e.g. 
“Household activities”). This may seem counterintuitive 
since most household activities happen in the home. But the 
classifier does not detect those activities because, knowing 
only location, it must guess “Sleeping,” as sleeping is a 
safer guess than household activities. A classifier that uses 
both Hour of day and Location can better identify 
household activities, but only unreliably, as there are other 
activities during the day that are often more likely.  

Different activities are improved by different variables. For 
example, educational activities cannot be predicted well 
based only on hour of day. But if we add the age group of 
the respondent as a contextual variable, “education” can be 
predicted with 39.0% Recall and 32.9% Precision. 

Note that adding a feature can reduce the Recall and/or 
Precision for some activities. For example, the recall for 
“Personal care” is worse using Location & Hour of day than 
when using just Location. This happens because the overall 
predictability of other activities improves (such as 
“Socializing, relaxing, and leisure” in this case.) In other 
words, the time of an activity allows the classifier to 
correctly classify activities such as “Socializing” in 
situations that it previously misclassified as “Personal 
care.” But these activities are not carved out perfectly: some 
“Personal care” activities are erroneously categorized (thus 
lowering Recall). The precision of “Personal care” is better 
with Location & Hour of day than with Location alone. In 
other cases, adding a feature may reduce precision.  

Some activities are always predicted poorly. Telephone 
calls are impossible to predict from any of the features in 
the time-use study. Fortunately, they are easy to detect in an 
activity-inference system that has access to the user’s 
cellphone. Other hard-to-predict activities, such as caring 
for others, volunteer activities, household services 
(supervising others’ work at home), and government and 
civic services may not be so easy to predict.  



 

Finally, we would like to emphasize that all these activity 
inference figures are calculated from general population 
statistics. There is no learning of any particular user’s 
patterns.  When such mechanisms are combined with 
techniques that incorporate time-use data, overall 
accuracies should be better.  

SIMULTANEOUS ACTIVITIES 
Some studies report “secondary activities” that happen in 
parallel with the primary activity. ATUS does not, because 
of the difficulty of collecting and coding these data. 
Interviewers must ask many more questions and often code 
different stop and start times for primary and secondary 
activities [21]. 

To investigate secondary activities, we studied the 1985 
American’s Use of Time study (AUT) (2923 participants). 
AUT codes activities differently from ATUS, using a flat 
variable with 92 codes. The main code is supplemented by 
a secondary code if a secondary activity was performed at 
the same time. 45% of all activities were accompanied by a 

secondary activity. On a time-weighted basis, 31% of the 
time there was a secondary activity. 

The most common activities that were either accompanied 
by a secondary activity or were themselves secondary 
activities to a primary activity were 1) “conversation, 
phone, texting,” 2) “watch television, video”, 3) “wash, 
dress, personal care”, 4) “other meals & snacks”, and 5) 
“listen to radio.”  Note that “other meals & snacks” 
includes all eating not at work or in a restaurant.  Very 
often, these activities were multitasked with each other. 

This result confirms observations from other ubicomp 
studies. For example, Logan, et al. [12] noted that their own 
intensive study uncovered the tendency of participants to 
overlap eating with other activities, and to perform eating in 
a variety of places. AUT also shows that 51.0% of all 
“other meals & snacks” activities either occurred with a 
secondary activity or were themselves secondary activities. 
AUT cannot, however, show how eating is spread out over 
places because it does not have fine-grain location 
information. However, another time-use study, the 1992 

Activity 

Avg 
hh:mm 
per 
day 

Accuracy of Tier 1 Activity Classification (in percent) 

Hour of day Hour of day & 
Age Group 

Prev Acty & 
Hour of day 

Location  Location & 
Hour of day 

Location &  
Prev Acty &  
Hour of day 

Rec Pre Rec Pre Rec Pre Rec Pre Rec Pre Rec Pre 

Personal care (inc. 
sleep) 9:23 87.2 74.5 85.8 77.5 88.2 84.0 100 56.8 89.0 82.3 89.1 86.6 

Socializing, relaxing, 
and leisure   4:31 52.1 39.3 57.5 39.8 61.0 41.6 14.3 47.8 71.2 47.1 73.8 49.0 

Work & work-
related activities 3:27 61.3 30.2 68.5 36.7 73.5 44.8 87.9 93.7 87.9 93.6 87.6 95.0 

Household activities 1:49 - - 1.0 21.8 11.6 28.6 0.1 52.3 14.2 31.5 22.2 34.0 

Telephone calls   1:14 - - - - - - - - - - 0.0 0.0 

Eating and drinking 1:06 - - - - 8.6 51.9 20.2 71.6 19.5 73.2 29.1 65.2 

Education 0:27 - - 39.0 32.9 4.4 44.1 64.7 69.9 64.3 69.6 59.8 72.2 

Caring for household 
members   0:26 - - - - 1.4 27.7 - - 0.0 1.5 2.4 35.7 

Consumer purchases 0:24 - - - - - - 89.2 88.9 89.2 88.9 88.2 89.9 

Sports, exercise, and 
recreation 0:18 - - - - 0.4 16.8 36.4 48.5 35.5 47.2 31.3 48.8 

Traveling   0:11 - - - - 31.8 49.4 96.0 97.0 95.9 96.8 94.8 96.1 

Caring for non 
household members 0:08 - - - - 0.1 11.9 - - 0.0 24.6 3.8 25.4 

Religious / spiritual 
activities 0:07 - - - - 2.6 17.7 80.7 56.4 80.0 56.4 75.8 60.1 

Volunteer activities 0:07 - - - - 0.8 15.7 - - 0.0 2.9 2.9 24.7 

Prof & personal care 
services 0:05 - - - - 3.5 34.6 5.1 85.7 24.5 22.0 40.0 32.5 

Household services 0:01 - - - - 0.0 0.0 - - - - 0.0 0.0 

Government and 
civic services  0:00 - - - - 3.0 22.3 - - - - 4.0 67.9 

Table 3: Precision and Recall, by Tier 1 activity, for classifiers based on various contextual variables. In cells containing a hyphen, 
the activity is never predicted because all combinations of input variables favor other activities. Dark shading indicates a classifier 
with an F-measure in the top 25% percentile of all non-degenerate classifiers.  Light shading indicates a classifier in the top half.  



National Human Activity Pattern Survey (NHAPS), does. 
For the NHAPS activity “Eat”, the top five locations are 
“Home, Kitchen” (47%), “Home, Living Room, Family 
Room, Den” (14%), “Home, dining room” (12%), “Indoors, 
Restaurant” (11%), and “Home, bedroom” (2%).  

Even though we must draw from several time-use studies to 
perform this analysis, the results confirm Logan et al.’s 
observations, and even go further, ranking the frequency of 
eating out within the frequency of eating in different rooms. 
The original observation of the nature of eating emerged 
from weeks of data collected about a single individual. 
Although our analysis is biased by self-reporting issues and 
draws on old data from multiple studies, different years, 
and different activity codes, it took only a couple hours to 
perform, and it does aggregate the activity patterns of 
thousands of people (2,923 in AUT, 7,513 in NHAPS). We 
are not arguing that analyses of time-use studies will 
replace original research, but rather that they offer a 
different perspective that is inexpensive and often 
worthwhile to explore. 

RESEARCH QUESTIONS 
Although the data from time-use surveys can be 
immediately useful for activity-inference systems, we see 
several interesting research questions that, if answered, 
could make significant new contributions to ubicomp 
activity-inference. 

How much do time-use activity and location taxonomies 
vary? There are differences among the classifications used 
by time-use studies; to what extent are these differences 
subjective? What aspects of activity and location are 
universally or near-universally agreed on?  How much do 
classification differences contribute to inaccuracies in 
activity prediction? 

What issues arise when adopting an activity taxonomy for a 
ubicomp application? A few ubicomp systems [6,20] have 
already adopted classifications used in time-use studies 
such as healthcare’s Activities of Daily Living [7], or the 
Multinational Time-Use Study activity classification [25]. 
Using a standard classification is beneficial because it is 
less likely to omit important activities, and more likely to 
interoperate with other systems if they adopt the same 
standard. However, our initial efforts in using time-use data 
uncovered significant activity mismatch challenges in 
adapting a time-use taxonomy to a mobile recommender 
system (codenamed Magitti [2]). How serious are these 
issues, and how can they be addressed? 

What methodologies used by time-use studies can be 
adopted in ubicomp systems? Because of the granularity 
gap and domain specific difference described earlier in this 
paper, time-use data may not always be adequate for certain 
kinds of activity inference. For example, a study might 
compare the differences in activity patterns after the 
introduction of a new technology.  In this case, although 
time-use study data itself may not be useful, the practices 

adopted by time-use studies (such as recruitment, collecting 
and coding data, and treatment of simultaneous activities) 
may help researchers avoid mistakes that would reduce the 
quality of their results.  

How can ubicomp contribute to time-use study research? 
Ultimately, ubiquitous computing may benefit time-use 
studies more than time-use studies may benefit ubicomp.  
Because time-use data is so critical for sociology, public 
health, economics, and media assessment, automated 
techniques of collecting the kind of data that time-use 
studies have traditionally provided would give these 
researchers tools to make more accurate and precise 
conclusions, to answer different questions, and to reduce 
their costs.   

CONCLUSION 
This paper has studied the applicability of time-use study 
data for ubicomp activity-inference systems.  We argue that 
these data are useful because they enable cheap and 
comprehensive activity classifiers, and we analyze the 
accuracy of these activity classifiers. We find that location 
is the most useful classifier feature, and that when 
combined with time of day, activity can be predicted with 
up to about 70% accuracy, depending on the activity 
taxonomy’s granularity. We further show how time-use 
studies provide a less expensive path for answering activity-
related research questions, such as the amount and nature of 
simultaneously-performed activities. We also describe 
several other uses for time-use data, and several research 
questions that would make this data even more valuable for 
the ubicomp community. 

The ubicomp and time-use research communities have 
barely interacted until now, yet it seems inevitable that they 
will influence each other more strongly in the near future.  
Already we have seen the application of survey data to 
transportation. Health-care applications are increasingly 
prominent in ubicomp, and have a long history in time-use 
research. Finally, ubicomp is becoming increasingly data-
driven and activity-oriented, whereas time-use research is 
becoming increasingly interested in how new technology 
might assist data collection [21,26]. 

Unfortunately, at the time of this paper’s writing, funding 
for ATUS, the American Time Use Survey, had been 
eliminated from the proposed US 2009 federal budget. 
Given the value to ubicomp applications that we have found 
for time-use data, and the rarity of unrestricted sources of 
recent episode data, it is our hope that this decision will be 
reversed, and that this study will continue to supply 
researchers with fresh data for many years to come. 
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