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ABSTRACT
Detecting inferences in documents is critical for ensuring privacy
when sharing information. In this paper, we propose a refined and
practical model of inference detection using a reference corpus.
Our model is inspired by association rule mining: inferences are
based on word co-occurrences. Using the model and taking the
Web as the reference corpus, we can find inferences and measure
their strength through web-mining algorithms that leverage search
engines such as Google or Yahoo!.

Our model also includes the important case of private corpora,
to model inference detection in enterprise settings in which there is
a large private document repository. We find inferences in private
corpora by using analogues of our Web-mining algorithms, relying
on an index for the corpus rather than a Web search engine.

We present results from two experiments. The first experiment
demonstrates the performance of our techniques in identifying all
the keywords that allow for inference of a particular topic (e.g.
“HIV") with confidence above a certain threshold. The second ex-
periment uses the public Enron e-mail dataset. We postulate a sen-
sitive topic and use the Enron corpus and the Web together to find
inferences for the topic.

These experiments demonstrate that our techniques are practical,
and that our model of inference based on word co-occurrence is
well-suited to efficient inference detection.

Categories and Subject Descriptors
H.2.7 [Database Management]: Database Administration—secu-
rity, integrity, and protection; I.2.6 [Artificial Intelligence]: Learn-
ing—knowledge acquisition; I.2.3 [Artificial Intelligence]: De-
duction and Theorem Proving—inference engines; K.4.1 [Computers
and Society]: Public Policy Issues—privacy
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1. INTRODUCTION
Imagine a team of government employees tasked with preparing

military documents for Web site publishing. The corpus of doc-
uments is too large for anything more than cursory review by a
human, and the topics covered by the documents include a broad
array of sensitive topics (e.g. weapons development) as well as
nonsensitive topics (e.g. purchase orders for office supplies). The
team understands that it is not enough to look for known sensitive
terms like “missile” and so they begin to look for other, seemingly
innocuous, terms that might allow the government’s missile devel-
opment activities to be inferred. That is, the team works on the
inference detection problem in this semi-structured data set.

To detect sensitive inferences, they turn to association rule min-
ing technology (e.g. [2, 1]). Given a reference corpus, association
rule mining analyzes the contents of the corpus to identify words
closely associated with “missile”, thus potentially providing the
team with an efficient way to identify the documents that might be
sensitive and need human review. Since the team has no repository
tailored to missiles, they decide to use the Web as their reference
corpus.

The team quickly runs into problems. The massive size of the
Web makes existing association rule mining algorithms impracti-
cal. In addition, attempts to work on smaller portions of the Web
are still problematic because the well-known algorithms only de-
tect associations with high support (e.g. [2]) or they depend on the
user to lower-bound the support requirements (e.g. [24]) and the
team simply doesn’t have that information. In the end, the associ-
ation mining algorithms fail to detect the association between the
set of terms “infrared, gyroscope, radar” and “missile” due to the
relatively small number of Web documents that contain any of the
first three terms and “missile”. Consequently, a sensitive document
concerning missile development is released.

Though this story is fictitious, such data leaks are commonplace.
The Iraqi Freedom Document Portal and the Nuclear Regulatory
Commission’s site, are two recent examples of government Web
sites that were shut down (in the case of the Portal, [6]) or signif-
icantly overhauled (the NRC’s site, [3]) when they were found to
contain sensitive documents.

We present a model and algorithms for mining such sensitive as-
sociations using large corpora such as the Web. This new model
captures the essence of inference detection in a simple formalism
inspired by association rule mining: inferences are based on word
co-occurrences. Our model, however, captures a far larger vari-
ety of inferences than basic association rule mining. While asso-



ciation rule mining is restricted to “conjunctive" inferences (co-
occurrences of items), our model also supports “disjunctive” infer-
ences that establish a relationship between a (conjunctive) set of
precedents (e.g., attributes of a person), A1, . . . , An and a disjunc-
tive set of consequents (e.g. suspected entities):

A1 ∧ . . . ∧An ⇒ B1∨ . . .∨Bj .

A key challenge in inference detection that is not present in the tra-
ditional association rule mining setting is modelling the knowledge
of an “adversary” (i.e. any individual from which sensitive data
should be withheld) in order to predict what the adversary can infer.
Since there is no database or corpus of the adversary’s knowledge,
we approximate such a corpus with the most appropriate data set
available (e.g. the Web). Hence, our reference corpus is an approx-
imation, and consequently there is the possibility of false positives
and negatives amongst the associations. A significant contribution
of this work is adapting the information retrieval notions of preci-
sion and recall to this setting, thus providing metrics for assessing
the accuracy of the discovered associations.

In [20] the notion of using the Web to represent the adversary’s
knowledge is introduced. However, the model in [20] is incom-
pletely specified and the algorithms proposed are computationally
expensive and no mechanisms are provided for evaluating their suc-
cess or failure. We build on this work with a fully-functional model
that connects association rule mining and inference detection and
supports far more efficient algorithms. For example, evaluating
a single inference using the algorithm of [20] takes 150 seconds,
while the fastest algorithm in this paper takes a mere 1.5 seconds.

We test our algorithms in two settings. First, we explore their
use in healthcare privacy legislation compliance. Most U.S. states
place restrictions on sharing information about the following sen-
sitive topics: HIV/AIDS, genetic information, mental health, and
communicable diseases [12]. Abiding by the intention of this leg-
islation is very challenging as it requires protecting any informa-
tion in medical records that can allow these sensitive topics to be
inferred. It is not enough to protect obviously sensitive terms such
as “HIV”; any medications or symptoms from which an HIV diag-
nosis can be inferred should be protected as well [22]. We provide
experimental data demonstrating the performance of our algorithm
in identifying all the keywords that allow for inference of a particu-
lar topic (“HIV" in our experiment) with confidence above a certain
threshold.

The second experiment explores the protection of a corporation’s
sensitive information (e.g. intellectual property, client data, etc.)
using an internal data set as the reference corpus. In particular, we
use the public Enron e-mail dataset to demonstrate how sensitive
topics can be protected with our algorithms. We divide the En-
ron corpus into test and training sets and postulate a sensitive topic
(“Wharton" in our experiment). We then use the training part of the
Enron corpus and the Web together to find inferences for the topic.
We evaluate the inferences found using the test part of the Enron
corpus.

To estimate the precision and recall of our experiments we em-
ploy human review, lower bound calculations and a stability anal-
ysis over different training sets. The sum total of this analysis is
substantial evidence of the good precision and recall achieved by
our algorithms.

Together with our model, our experiments demonstrate that it
is possible to mine associations efficiently even with a reference
corpus as large as the Web, and to use these associations to protect
privacy.

Overview. The rest of this paper is organized as follows. We re-
view related work in the rest of this section. In Section 2, we give

a precise definition of the problems of inference detection and in-
ference control. In Section 3, we present our model of knowledge
and inferences. We illustrate this model with two simple examples
in Section 4. We discuss our algorithms for detecting inferences in
Section 5, and present our experimental results in Sections 6 and 7.
Finally, we conclude with a discussion of future work in Section 8.

1.1 Related Work
Our inference detection algorithms can also be viewed as algo-

rithms for finding association rules that are of a sensitive nature.
In our setting, an association rule is an implication of the form
A ⇒ B, where A and B are disjoint sets of words, and B is of
a sensitive nature, e.g., a medical condition like HIV or a person’s
identity. Recall that an association rule is said to have high confi-
dence if Pr(B|A) is large, and large support if Pr(A∧B) is large.
Much of the association rule mining literature focuses on finding
rules that have both high confidence and high support (see, for ex-
ample, [2, 1]).

There are 3 important differences between our work on inference
detection and conventional association rule mining.

The first difference is that in privacy applications, unlike data-
mining applications, inferences need not have high support to be
considered important or sensitive. Our goal is to find all associa-
tions of a sensitive nature, and thus we cannot limit ourselves to
rules with large support. Indeed, a feature that makes the privacy
problem so challenging (and any automated algorithmic solution so
valuable) is that sensitive inferences are almost certain to have low
support when viewed in the context of a large corpus such as the
Enron data set or the Web. Hence, algorithms such as Apriori and
AprioriTid [2] which prune low-support item sets (sets of words, in
our case) are not directly applicable to our setting.

Recent research explores the discovery of rules meeting certain
support constraints, thus potentially allowing lower support rules to
be discovered (e.g. [24]). However, this approach assumes an un-
derstanding of minimum support constraints that is very difficult to
achieve in the "needle in a hay stack" problem of finding sensitive
inferences.

Second, conventional association rule mining assumes full ac-
cess to a structured database (e.g. a supermarket database of trans-
actions) or semi-structured corpus which, by definition of the task
at hand, contains all the association rules of interest. Our goal is
to detect the associations that may lead an adversary to make unde-
sired inferences and unfortunately, there is no database of adversary
knowledge from which to extract these associations. We approxi-
mate such a database using the best publicly available corpus for
the context. For example, we experiment with using the Web to de-
tect sensitive medical inferences, and a corporate email repository
(the Enron corpus, [9]) to demonstrate the detection of inferences
pertaining to a sensitive topic (e.g. new product plans). To mine
these corpora we use Web search engines and Lucene [4], respec-
tively.

Innovative algorithms have been developed for mining semi-structured
data for association rules (e.g. [19, 5]) but again this work assumes
the corpus at hand contains all the wanted association rules, so any
that are discovered (and meet the required confidence and support
goals) are necessarily valid. Our necessary reliance on corpora that
approximate the nonexistent "adversary knowledge corpus", may
lead to the discovery of erroneous rules and the failure to discover
accurate ones. To deal with this issue, we discuss ways to measure
the precision and recall of our results (see Sections 6 and 7).

A third difference stems from the fact that association rules are
typically mined in the “market basket” setting with the goal of dis-
covering when the purchase of a collection of goods is likely to be



accompanied by the purchase of another good (e.g. milk is almost
always purchased along with butter and bread). Implications stem-
ming from a conjunction of items (butter ∧ bread → milk) are
typically enough to support the marketing recommendations (e.g.
grocery store layout) that are the most common goal of associa-
tion rule mining. Since our concern is implications that impact
privacy, we are interested in more complex implications, beyond
association rules, as well. For example, if A ∧ B → C ∨D and
A′ ∧ B′ → C ∨ E then in our setting it may be critical to notice
that A ∧ B ∧ A′ ∧ B′ → C, if, for example, C is the identity of
an individual. Our model supports the detection of more complex
inferences such as these.

Our approach to inference detection is in the same spirit as the
use of the Web by Nakov and Hearst [18] to resolve language am-
biguities. Their idea is to use co-occurrence on the Web to dis-
ambiguate phrases. In this paper we also make use of the Web to
side-step the issue of training data, but with a different application,
the detection of potential privacy violations. We use co-occurrence
on the Web to model adversary knowledge and consequently, to
detect undesired inferences that may be drawn from text.

We also note that a huge body of work in information retrieval,
natural language processing (NLP) and data mining is based on the
powerful word co-occurrence feature. Indeed, co-occurrence is at
the root of many techniques for detecting synonyms (e.g. [23]),
interpreting search engine queries (e.g. [11]), automatic indexing
and annotation [7, 8] and problems in structural linguistics like dis-
covering conventional expressions (e.g. [17]). Here, we exploit
co-occurrence for a new application, the identification of sensitive
inferences to support privacy.

The notion of using the Web to detect inferences was introduced
in [20]. Our approach is significantly different from the algorithms
in [20]. Every algorithm in [20] relies on analysis of Web pages
to identify inferences. For example, to determine if conditions A
and B imply a diagnosis of HIV, [20] would issue a search engine
query “AB” and examine the resulting hits for the appearance of
the term “HIV”. In large part due to this analysis, the algorithms
of [20] are slow and consequently, the algorithms contain shortcuts
that lessen the depth of inference detection that is possible in order
to keep running time at a reasonable duration. For example, in [20]
a sensitive term such as “HIV” is only found if it occurs in the
first 5000 lines of the html of a Web site. For sites with significant
graphics this restriction is likely to enable the analysis of only a
small fraction of the actual text.

In contrast, we leverage the indexing power of the search en-
gine to avoid this costly step while doing more thorough inference
detection. In short, we use the fact that the search engine can mea-
sure co-occurrence of terms for us to avoid doing any more content
analysis than retrieving the hit counts. In addition, we develop the
first rigorous model for corpora-based inference detection (with the
Web and the Enron emails being our example corpora) and present
approaches to measuring the precision and recall of our algorithms.

Finally we note that inference detection is a well-studied prob-
lem in the database community (see, for example [10]), where the
problem is to find ways in which classified or otherwise sensitive
information can be learned through a sequence of database queries
for unclassified or non-sensitive information. In addition, Sweeney
has looked at the problem of using the Web to identify inferences
based on regular expressions such as social security numbers and
account numbers [21]. Inference detection in structured databases,
while certainly difficult, is nevertheless a simpler problem than the
problem we consider of detecting inferences in free-form text doc-
uments.

2. PROBLEM DEFINITION
Let D denote a document, or a collection of documents. Infor-

mally, let K(D) denote the “knowledge" (or facts, or axioms) that
can be extracted from D. We assume the existence of knowledge
composition rules, which specify how to derive new knowledge
from the combination of existing pieces of knowledge. We write
K(D) for the closure of K(D) under the knowledge composition
rules, i.e. the closed set of all knowledge obtained from K(D) by
repeated application of the composition rules.

Inference detection. Now let C denote a private collection of doc-
uments that is being considered for public release, and letR denote
a collection of reference documents. Informally stated, the problem
of inference control comes from the fact that the “knowledge" that
can be computed from the union of the private and reference collec-
tionsK(C∪R) is typically greater than the unionK(C)∪K(R) of
what can be extracted separately from C andR. In its most general
formulation, the inference detection problem is to understand the
difference

δ(C,R) = K(C ∪ R)−
(
K(C) ∪K(R)

)
.

Inference control. In almost all applications, we have a set S of
sensitive or secret knowledge that the publication of C should not
expose. In that case, the problem of inference control can be stated
more precisely as the problem of ensuring that the intersection S ∩
δ(C,R) is empty. Inference control is closely tied with redaction,
that is, the sanitization of a document by removal of some of the
document’s content. When the intersection S ∩ δ(C,R) is non-
empty, an additional goal of inference control is to identify a subset
Csub ⊂ C such that S ∩ δ(Csub,R) = ∅. While Csub = ∅ trivially
satisfies this condition, the goal might be to identify a subset Csub

of maximum size or to preserve as much information on a certain
topic while protecting S.

Controlling privacy leaks by identifying the set Csub that is ap-
propriate to release is a highly challenging problem (particularly in
light of attacks such as [16]) that is not the subject of this work.
That said, since it is a crucial part of the content security problem,
we outline some of the research issues around it when discussing
open problems in Section 8.

Adversarial model. This formulation of the problem implies as-
sumptions about our adversarial model, which we now detail ex-
plicitly. We assume that the adversary does not have any additional
private knowledge beyond the reference collection R. We also as-
sume that changes to the collection C prior to its publication (e.g.
redaction, obfuscation) do not themselves allow the adversary to
infer information about C. We also note that inference control may
be accomplished in other ways than redaction; for example, words
may be replaced or words may be added to provide inference con-
trol. In this paper our focus is on identifying, as opposed to con-
trolling, inferences.

3. INFERENCE MODEL
In this section, we define the “knowledge extraction" function

K, and the knowledge composition rules that allow us to compute
K from K. Sophisticated formal languages have been developed
in the NLP community to represent human knowledge (see [15]
for a survey), but these heavy-weight languages would not allow
for efficient computation of inferences. In this work, we adopt a
simple formal representation of knowledge inspired by association
rule mining: knowledge extraction is based on word co-occurrences
and knowledge composition rules are the rules of Boolean logic.
This model is well suited to efficient inference detection.



Association rule mining. The goal of association rule mining is to
discover elements that frequently co-occur in a given data set. The
best-known use of association rule mining is in market-basket anal-
ysis, where the data set consists of customers’ purchases and the
goal is to discover products that are often purchased together (e.g.
bread and milk). We use an approach similar to association rule
mining to model the knowledge present in a collection, C, of docu-
ments. We search for sets of keywords that frequently co-occur in
the collection C, and model the knowledge in C with these sets. For
example, if C is a collection of medical documents about HIV, we
may learn the following sets of frequently co-occurring keywords:
{HIV,AIDS} or {HIV,gp120}. There is no question that this simple
model captures only a fraction of the human knowledge embedded
in C. Nevertheless, we will demonstrate the power of this model to
efficiently detect inferences.

Inference model. Adapting the framework of association rule min-
ing to the detection of inferences in free form text documents raises
both theoretical and algorithmic challenges. We address first the
main theoretical differences between our model and association
rule mining (algorithmic challenges are discussed in Section 5):

• Given a collection C of documents, the first challenge is to
define the items associated with C and to represent C as a
collection of item sets. One possible approach is to make
every word in C an item, and to group words that appear in
the same sentence into an item set. Other possibilities are
discussed in Section 3.1.
• The second challenge is to define item sets of interest. In

traditional association rule mining, interesting item sets are
frequent item sets. In addition to frequent item sets, we pro-
pose definitions of interesting item sets that are more closely
tailored to our privacy application (Section 3.2).

3.1 Items and Item Sets
Let V (for vocabulary) denote the set of all the words that ap-

pear in the collection C of documents. We assume that V contains,
without restriction, all the words, numbers, dates, symbols, entity
names, etc, which appear in the collection C. We could define the
set of items to be V itself, but this ignores the lexical structure of the
language and the semantic content of C. To take these into account,
we let T denote the set of items and define a function f : V ⇒ T
which maps any word v ∈ V to an item t ∈ T . The function f may
take into account any (or all) of the following:

• Lexical structure: mapping a word to its lexical stem (e.g.
“walks"⇒ “walk").
• Syntactic structure: mapping a word to its grammatical

function (e.g. “child"⇒ “Subject:child"). Our experiments
do not implement syntactic parsing.
• Semantic structure: filtering words to keep only those re-

lated to a particular application area. For example, f may
define items for words in V related to medicine, or finance,
or patent law, etc, and discard other words.

Boolean Formulas. Given the set of items T , we can define boolean
formulas of items. Let ∧ denote the boolean operator AND, and ∨
denote OR. If A ∈ T , we let A denote the negation of A. The
notation A⇒ B is equivalent to A ∨B.

Item Sets. Given a definition of items, we represent the collection,
C, of documents as a collection of item sets. The simplest represen-
tation is to create one item set for each document in the collection.
The item set associated with a document consists of all the items
contained in that document. More generally, we allow for finer

grained definitions of item sets. We decompose every document in
C into a collection of textual units, where a textual unit can be a
sentence, a paragraph, a page, a section, etc. Let C′ denote the re-
sulting collection of item sets. We then associate one item set with
every textual unit in C′, consisting of all the items in that textual
unit.

Our algorithms search for inference precedents in each textual
unit, so for efficiency reasons it is desirable that a textual unit be as-
sociated with a single inference, that is, the topic of the textual unit.
Our experimental results choose textual units with this in mind.

Support of a formula. Let S ∈ C′ be an item set, and let F be a
Boolean formula of terms. Viewing the set S as a conjunction of
items, we say that S satisfies F if S ⇒ F . We define the support
Supp(F ) as the probability that S satisfiesF for an item set S ∈ C′.
In other words:

Supp(F ) = Pr
S∈C′

[S ⇒ F ]

3.2 Inference Rules
The knowledge extracted from C is represented as a list of infer-

ences of the form A ⇒ B, where A and B are Boolean formulas
of items. We adopt the terminology of association rule mining and
call A the antecedent and B the consequent of the inference. We
review briefly definitions used in association rule mining to deter-
mine the importance of an inference, and discuss the relevance of
these definitions to inference detection.

DEFINITION 1. The support of an inferenceA⇒ B is the sup-
port of A ∧B.

DEFINITION 2. The confidence of an inference A ⇒ B is the
ratio Supp(A ∧B)/Supp(A).

Association rule mining typically searches for inferences with
high support and high confidence. High support is a much weaker
indicator of the importance of an inference in our privacy applica-
tion, since even an inference with low support may allow an adver-
sary to draw damaging conclusions.

Logical closure. Our algorithms will search for inferences with
confidence above certain thresholds. These inferences will consti-
tute the knowledge K(C) extracted from the collection C of docu-
ments. Given this seed set of inferences, the closure K(C) is com-
puted from the inferences by application of standard Boolean rules.

4. EXAMPLES
Before describing our inference detection algorithms, we illus-

trate the model of Section 3 and the challenges of inference detec-
tion using large corpora with two examples.

Simple Inference. Let’s assume that the private collection C con-
sists of the medical record of a single patient. We assume that
the reference collection R consists of all Web pages indexed by a
search engine, and we consider each Web page as a distinct textual
unit.

In this example, items are medical keywords (we ignore other
words). Assume that we have extracted the keyword gp120 from
the collection C, and we want to measure the confidence of the in-
ferences (gp120⇒ HIV) and (gp120⇒ Flu) using the knowledge
extracted fromR.

Since we have defined the textual units ofR to be Web pages, the
support Supp(W ) of an itemW is simply the fraction of Web pages
which contain the keyword W . This fraction can be obtained from
the search engine with a single query. Using Google for example,



we learn that Supp(gp120) = 991, 000 and Supp(gp120∧HIV) =
919, 000. It follows that

Confidence (gp120⇒ HIV) ≈ 0.93

Similarly, Supp(gp120 ∧ Flu) = 27, 500, and thus

Confidence (gp120⇒ Flu) ≈ 0.03

With a confidence threshold set at 0.2, the inference (gp120⇒ Flu)
would (correctly) not be considered significant, but the inference
(gp120 ⇒ HIV) would (correctly) be considered very significant
(gp120 is a glycoprotein that attaches to the HIV retrovirus).

Complex Inferences. In the simple example above, the precedent
(gp120) and consequent (HIV) of the inference consist of a single
keyword. Our model, however, allows the precedent and conse-
quent to be arbitrarily complex Boolean formulas of keywords. For
example, we can define the confidence of the inference A ∨ B ⇒
(C ∨ (D ∧E)), where A,B,C,D and E represent keywords. We
can not only define these complex inferences, but also measure
their confidence, since most search engines support both disjunc-
tive and conjunctive queries. In practice, our ability to measure the
confidence of complex inferences is limited only by the sparseness
of the Web, which we discuss next.

Let F and G denote Boolean formulas of terms. The confidence
of the inference F ⇒ G is the ratio of the support of F and the
support of F ∧ G. For complex formulas F and G, the support
of F ∧ G may be zero: there are no documents on the Web that
satisfy both the formulas F and G. This makes it impossible to
directly compute the confidence ofF ⇒ G. Consider the following
example:

F = (Lowes Lake ∧ Las Vegas ∧ C5.0 ∧ SVM)

G = KDD-08

The support of F ∧ G, as measured by Google, is zero. This is
not to say that the inference F ⇒ G is invalid. In fact, mention
of “C5.0" and “SVM" in Las Vegas at the Lowes Lake Hotel, most
likely implies the KDD-08 conference. But the confidence of this
inference cannot be directly measured due to the sparseness of the
Web.

The knowledge composition rules defined in our model can in
theory help mitigate the problem of the sparseness of the Web. We
offer the following made-up example as illustration. Suppose that
we have found the following inferences to have high confidence:

(Las Vegas ∧ Lowes Lake)⇒ (KDD ∨ ∨ . . . )

(C5.0 ∧ SVM)⇒ (KDD ∨ SIGMOD ∨ . . . )

If “KDD" is the only term in the intersection of the consequents of
these two inferences, Boolean composition rules allow us to infer
F ⇒ G with high confidence.

In the rest of this paper, we focus on algorithms for measuring
the support and confidence of fairly simple inferences. Our algo-
rithms and experiments do not illustrate the logical combination of
simple inferences to compute more complex inferences. Logical
combination is nevertheless a powerful feature of our model, that
we plan to explore in future work. Note that one way to improve
the results of Section 6 would be to leverage logical combinations.

5. ALGORITHMS FOR MEASURING
INFERENCE CONFIDENCE

In Section 3.1, we define the support of a formula as

Supp(A) = Pr
S∈C′

(S ⇒ A).

In this section, we discuss how to compute Supp(A) in practice.
Recall that the definition of support depends on a collection of doc-
uments C and on the textual sub-units used to define C′.

Given the collection of documents C and sufficient computa-
tional resources, it is easy to compute Supp(A) for any formula A.
Unfortunately, unrestricted access to C is not always possible. In
what follows, we focus on the difficult but common case in which
the collection C consists of all documents publicly available on the
Web. Crawling the whole Web is an expensive operation, so we
cannot assume direct knowledge of C. Instead, we rely on search
engines to mediate access to C and discuss various techniques for
estimating Supp(A) via queries to a search engine.

Measuring support. For simplicity, we start with the assumption
that the formula A is a conjunction of terms: A = V1 ∧ . . . ∧ Vk.
(Some search engines also provide limited support for disjunctive
queries). We issue a query to a Web search engine for the key-
words V1, . . . , Vk (note that search engines interpret such queries
conjunctively by default), and let nA denote the number of docu-
ments found by the search engine to match this query. LetN denote
the total number of documents indexed by the search engine. We
estimate the support of A as Supp(A) ≈ nA/N . Note that the nor-
malizing factor N serves to ensure Supp(A) ∈ [0, 1] and need not
be known precisely.

Estimate of confidence. The technique above for estimating the
support of a formula allows us to estimate the confidence of A ⇒
B as

Confidence(A⇒ B) ≈ nA∧B/nA.

We call this estimate the PMI-IR estimate of confidence, after Tur-
ney [23], who used the same technique on single terms to rate
their similarity. Note that the PMI-IR estimate of confidence can
be computed very efficiently: it requires only two search engine
queries.

6. ENUMERATION EXPERIMENT
The inference enumeration problem is the problem of determin-

ing all the precedents A which imply a given consequent B with
confidence above a certain threshold. In our experiment, we chose
the consequent “HIV" and searched for precedents that allow for in-
ference of HIV. This experiment is motivated by the practical prob-
lem of redacting from a medical record all information that might
allow for inference of HIV infection. We limited our search for
precedents to single keywords, but the same technique would allow
us to test pairs, triplets, and more generally tuples of keywords.

6.1 Generation of candidate inferences
We took a simple approach to generating candidate precedents

that generalizes easily. We issued a query for “HIV" to a search
engine (via Yahoo!’s web search API [25]) and retrieved the top 10
hits. Results included the Wikipedia article on HIV and “HIV In-
Site", a site with information on HIV maintained by the University
of California San Francisco. We discuss the choice of the number
of documents to retrieve in Section 6.2.

We processed these 10 documents with the Apache Lucene in-
dexer [4] and extracted 2349 distinct keywords from the docu-
ments. For all these keywords, we measured the confidence of the



1.00 hiv-1 0.84 emtricitabine 0.74 didanosine 0.68 emedicinehealth 0.60 invirase
1.00 hiv-2 0.83 coinfected 0.74 indinavir 0.68 coreceptor 0.60 croi
0.99 nnrti 0.83 aidsinfo 0.74 abacavir 0.68 gp160 0.58 cxcr4
0.96 aidsmap 0.82 lopinavir 0.74 fosamprenavir 0.68 retroviruses 0.57 fortovase
0.94 etravirine 0.82 lipodystrophy 0.74 mycobutin 0.67 viread 0.57 medterms
0.91 antiretroviral 0.81 nelfinavir 0.73 atazanavir 0.65 lexiva 0.57 pneumocystis
0.91 thebody.com 0.80 microbicides 0.72 epzicom 0.65 immunodeficiency 0.56 carinii
0.91 retrovirals 0.78 stavudine 0.72 zalcitabine 0.64 rifabutin 0.55 crixivan
0.89 gp41 0.77 truvada 0.71 ziagen 0.64 seroconversion 0.55 kaletra
0.89 enfuvirtide 0.77 saquinavir 0.70 trizivir 0.64 viracept 0.54 mtct
0.86 rescriptor 0.76 delavirdine 0.70 ritonavir 0.63 retrovir 0.53 lentivirus
0.86 gp120 0.76 amprenavir 0.70 lamivudine 0.62 lymphotropic 0.53 hemophiliacs
0.85 tenofovir 0.76 zidovudine 0.70 combivir 0.62 htlv 0.50 foscarnet
0.84 unaids 0.76 ccr5 0.69 integrase 0.61 norvir
0.84 nevirapine 0.75 efavirenz 0.68 progressors 0.61 vaginosis

Figure 1: Top precedents which imply HIV, with support greater than 100,000, ranked in decreasing order of confidence. Confidences
were computed using the PMI-IR algorithm described in section 5.

inference Keyword⇒ HIV using the PMI-IR algorithm defined in
Section 5.

6.2 Results
The PMI-IR algorithm requires two queries to a search engine to

estimate the confidence of an inference. Our implementation of the
PMI-IR algorithm tested all 2349 keywords in approximately 70
seconds, whereas the algorithm of [20] reportedly took more than
6 hours to test 435 inferences.

The output of our algorithm was a list of all 2349 precedents,
ranked in decreasing order of the confidence with which they im-
ply HIV. The table of Figure 1 shows the top precedents which im-
ply HIV with confidence greater than 0.50, among precedents with
support greater or equal to 100,000. There were 70 of these prece-
dents in all. The lower-bound of 100,000 on the support of the in-
ference is arbitrary, and was chosen only to present the reader with
a list of precedents that is not too obscure. In a specialized med-
ical application, precedents with lower support would be equally
important.

Precision. We estimate the precision of our inference enumeration
algorithm as the fraction of “correct" inferences among these 70
inferences (i.e. the inferences of Figure 1). A medical expert (a
licensed physician in internal medicine with HIV-infected patients)
evaluated the 70 inferences of Figure 1 manually. He classified 53
of the 70 inferences as correct, i.e. the precedent of these inferences
is clearly related to HIV. Of the remainder, some precedents were
not necessarily connected to HIV but did trigger the thought of HIV
(for example, “hemophiliacs").

Interestingly, some of the precedents deemed by our medical ex-
pert to not imply HIV were “ccr5" (an HIV protein), “UNAIDS"
(the United Nations AIDS effort), and various AIDS web-sites such
as “aidsinfo" and “thebody.com". This suggests that a more com-
plete review of our inferences would require a panel of HIV experts,
including perhaps a molecular biologist or an HIV sociologist. The
difficulty in obtaining a complete review of our results underscores
our point that detecting inferences is a difficult, time-consuming
and costly task. It also highlights the potential of our automated ap-
proach for enumerating inferences, which uses the Web as a proxy
for all human knowledge and thus draws from all disciplines.

Recall. We define the recall of our algorithm as the fraction of
precedents that allow for definite inference of HIV found by our al-
gorithm. The recall of the algorithm is hard to estimate, since there
exists no comprehensive list of precedents that allow for inference
of HIV. To estimate recall, we resort to indirect evidence that our
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Figure 2: Number of inferences found for HIV as a function
of the number of source documents, for different values of the
confidence cutoff.

algorithm found “most" precedents that definitely imply HIV.
Figure 2 shows the number of inferences found as a function of

the number of source documents used to generate candidate prece-
dents, for different values of the cutoff below which inferences are
deemed insignificant. Not surprisingly, the graph shows that gen-
erating more candidate precedents from more source documents
yields more inferences. However, the graph suggests a sublinear re-
lationship between the number of source documents and the num-
ber of inferences found. The addition of new source documents
yields few additional inferences after around 10 documents, imply-
ing that at least for the “HIV" precedent, reasonable recall would
be achieved when the algorithm uses 10 source documents.

In many applications the inference detection occurs in the con-
text of a private corpus. In Section 7, we show that the use of a
private corpus helps focus the inferences found and improves re-
call.

7. PRIVATE CORPUS
For our second experiment, we describe the use of our inference

detection algorithms in the presence of a private corpus. Potential
application scenarios include:

E-discovery. A corporation is sub-poenaed for all documents re-
lated to a given topic. We describe inference detection algo-
rithms that help find all these documents, using the private
corpus of internal corporate documents.

Data Leak Prevention. A corporation wants to ensure details on
highly secretive projects are not leaked. For instance, before
the release of the iPhone, terms such as SIM card or GSM
contained in outbound Apple e-mails might merit closer scrutiny.



Figure 3: Precision and Recall Schematic

We describe inference detection algorithms that will help find
these terms using the internal Apple corporate documents.

In our experiment, we held part of the private corpus in reserve
as a test set and used the remainder as input to our algorithms to
generate inferences for a given sensitive topic. We then used these
inferences on the test set to obtain a set of flagged documents. We
analyzed the set of flagged documents in terms of precision and
recall.

Of course, for these applications one can proceed as in Section 6
and simply use the Web to find inferences for a given topic. We
argue, however, that this approach does not leverage the knowledge
contained in the private corpus and better results will be obtained
using the techniques that follow.

Description of Enron e-mail corpus. The Enron e-mail corpus
consists of e-mail from about 150 senior managers of Enron and
contains over half a million messages. The corpus was made pub-
lic as part of the Federal Energy Regulatory Commission Enron
investigation. We use a cleaned version of the dataset available at
[9]. The data leak prevention company InBoxer [13] uses the same
Enron corpus to demonstrate their outbound e-mail scanning tech-
nology [14].

Generation of candidate inferences. In our experiment, we chose
the topic of “Wharton", the business school of the University of
Pennsylvania. This is a well-known public entity, so that it is easy
to evaluate the quality of the inferences detected. Almost 800 mes-
sages in the Enron corpus contain the term “Wharton". Note that
there are a handful of e-mails that contain the term Wharton in ref-
erence to Wharton, the county of Texas. We divided the Enron
corpus into test and training sets by date, so that roughly each set
contained half the e-mail with the term Wharton.

We generated candidate inferences for Wharton by taking all
terms from all e-mails in the training set containing the term Whar-
ton. Each candidate inference has two measures of confidence, the
usual Web confidence, as in Section 5, and an analogous confidence
computed using the private corpus:

Confidence(A⇒ B) ≈ # docs containing A and B
# docs containing A

Note that we also generated candidate inferences by the method of
Section 6, but we found that this additional step rarely generated
anything of value. Indeed, the value of the private corpus is that it
helps provide an efficient way to come up with relevant candidate
inferences. The private corpus compensates for the sparseness of
the Web and also acts as a counter balance to the all-encompassing
nature of the Web.

Estimation of Precision. Precision is the percentage of identified
e-mails that are indeed about Wharton. To calculate precision, we
approximate by assuming the e-mails about Wharton contain the
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Figure 4: Precision and Recall curve of “Wharton" inferences

Wharton keyword. Note that this is an underestimate of precision,
neglecting the e-mails about Wharton, the county in Texas.

In Figure 3, precision is (B+C)/(A+B+C). We approximate
precision with B/(A+B + C).

Estimation of Recall. Recall is the percentage of e-mails that are
identified out of all e-mails about Wharton. Recall is difficult to
practically evaluate, because it requires looking at several hundred
thousand e-mails to see if they are about Wharton.

Hence, to calculate recall, we manually reviewed the e-mails
containing the Wharton keyword to see if Wharton could be in-
ferred even without the "Wharton" keyword. In this way, we ob-
tained a set of e-mails that could be inferred to be about Wharton
even without the Wharton term. Then the estimate for recall is the
percentage of these e-mails identified where we do not use the triv-
ial inference (wharton⇒ wharton).

In Figure 3, recall is (B + C)/(B + C +D). We approximate
recall by restricting to subset B.

7.1 Results
Our results are shown in Figure 4. The figure shows the trade-off

between precision and recall (as defined in the previous section) for
emails identified as sensitive in the Enron corpus via different sets
of inferences.

We use as a baseline a simple set of two inferences that was man-
ually generated: (wharton⇒ wharton), and (university of pennsyl-
vania⇒ wharton). These two inferences are a good proxy for in-
ferences that a non-expert human would find manually in a short
period of time. Identification of sensitive emails using this basic
set of two inferences achieves high precision (75%) but mediocre
recall (61%). This baseline data-point is shown as a square in Fig-
ure 4.

Next, we used our inference detection technology to generate ad-
ditional inferences, using the training portion of the Enron dataset.
For each inference, we computed two (confidence, support)-pairs,
corresponding to the two corpuses of the Web and Enron training
set. For various cutoff values of confidence and support in the two
corpuses, we obtained points in a precision-recall graph, as seen in
Figure 4.

• The triangles show the precision and recall obtained using
purely the Enron training set confidence and support. The
light triangles correspond to a high support cutoff and the
dark triangles correspond to a low support cutoff.
• The diamonds show the precision and recall obtained using

purely Web confidence and support.
• The crosses show the precision and recall obtained using

both Web and Enron training set confidences and supports.



Wharton professors Kleindorfer, Kunreuther, Kunruether,
Reibstein, Harker, Farber

Wharton students Degiacinto
University of Pennsylvania upenn, www.upenn.edu, dh/6371,

Sansom
Hotel on Wharton campus www.innatpenn.com, 1-800-809-7001
Wharton ZIP codes 19104, 19104-6371, 19104-6366
Wharton phone numbers 573-5727, 573-8394, 573-2130,

215-222-4600, 215-573-7722,
215-573-2129, 215.222.0200,
215-222-0200, 215-573-2130,
215-898-4589

Other business schools Draganska, Tadelis, Phanish, INSEAD
Unknown / errors ERASMUS, bringstogether,

energyexpress, ipnetwork.com,
barker.online, communicade,
Halich, Mattesich, 853-6848, 482-8411

Figure 5: Top 40 precedents which imply Wharton.

To summarize our results, our tools for generating additional in-
ferences allow us to increase recall by 20% (from 61% to 81%)
with only a barely noticeable degradation in precision (from 75%
to 73%). We achieved recalls as high as 91%, but at the cost of a
significant drop in precision (to 29%).

To illustrate the types of inferences that we were able to detect,
we give in Figure 5 the list of the top 40 precedents that we found
for the consequent “Wharton", using both the Web and the private
Enron corpus. This list of 40 inferences was generated with the fol-
lowing parameters. For the Email corpus, we requested a support
≥ 2 and confidence > 0.6. For the Web corpus, we requested sup-
port > 5 and confidence > 0.01. The list was manually classified
into categories for the sake of clarity. The number and diversity
of inferences found automatically by our inference detection tool
suggest that these tools would be very valuable in helping humans
review and detect sensitive inferences.

8. CONCLUSION AND FUTURE WORK
We have given a general theoretical framework for describing

inferences and using Web-based probabilities to rate their strength.
We evaluated the strength of the identified inferences using known
web-mining algorithms. We presented a case study of detecting
HIV inferences: we generated precedents that implied HIV, rated
their strength, and submitted the results for human review. We pre-
sented another case study of detecting inferences for “Wharton"
using the Enron e-mail corpus.

Our techniques provide an efficient mechanism for detecting sen-
sitive content. In practice, they might be used to identify documents
that need human review before their release.

As mentioned in Section 2, the focus of this paper is detecting
inferences rather than the equally challenging task of protecting
against inferences. Protection options include selective removal of
text (i.e. redaction), encryption of text, sanitization of text (includ-
ing introducing noise) and quarantining of content. Each approach
comes with security and usability concerns that are difficult to eval-
uate. We highlight the need for a system that supports the user in
making protection decisions as an open research problem.

An additional avenue for future work is leveraging the analysis
of Web structure and document content to improve our inference
detection algorithms. For instance, an analysis of the effect of sub-
document item sets and the weighting of item sets according to
some measure of authoritativeness may help reduce false positives
and false negatives.
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