The Eifel Retransmission Timer

Reiner Ludwig
Ericson Reseach
Herzogenrath, Germany

Abstract

We analyze two alternative retransmisson timers
for the Transmisgon Control Protocol (TCP). We first
study the retransmisson timer of TCP-Lite which is
considered to be the current de facto standard for TCP
implementations. After revealing four mgor problems
of TCP-Lite's retransmisson timer, we propose anew
timer, named the Eifel retransmission timer, that elimi-
nates these. The strength of our work lies in its hybrid
analysis methodology. We develop models of both re-
transmisson timers for the class of network-limited
TCP bulk data transfers in steady state. Using those
models, we predict the problems of TCP-Lite's retrans-
misgon timer and develop the Eifel retransmissontim-
er. We then validate our model-based analysis through
measurements in area network that yield the same re-
sults.

1. Introduction

The retransmission timeout value (RTO) isthetime
that elapses after a packet has been sent until the sender
considers it lost and therefore retransmits it. This event
iscalled atimeout. The RTO isaprediction of the upper
limit of the round-trip time (RTT), i.e., the time that
el apses after a packet left the sender until the sender re-
ceives a positive acknowledgment (A CK) for that pack-
et. In the following, we speak of “the RTT” when
referring to the RTT of the last segment for which the
sender received the ACK, independent of whether the
sender had timed that segment to derive the RTT. Espe-
cialy on an end-to-end peth through the Internet, the
RTT may vary considerably for various reasons. The
time that remains until the timeout for a packet occursis
maintained bythe retransmission timer state (REXMT).
Thus, theRTOisthe REXMT’sinitial value. We usethe
term retransmission timer to refer to the cmbination of
REXMT and RTO.

The retransmisson timer is a key feature of areli-
ablelink or transport layer protocol. It can greatly influ-
ence peer-to-peer performance. A too optimistic
retransmissontimer often expires prematurely. Such an
event iscalled aspurioustimeout. It causes unnecessary
traffic, so-called spurious retransmissions, reducing a
conrection’s effective througtput. In TCP [20], time-
outsalso trigger congestion control [1], [6], [8], [21] that

Keith Sklower
Computer Science Division
University of California & Berkeley

may additionally reduce the end-to-end throughpu. A
retransmisson timer that is too conservative may cause
long idle times before the lost packet is retransmitted.
This can also degrade performance. Thisis obvious for
interactive request/resporse-style conrections. But it
also aff ects bulk data transfers whenever the sender has
exhausted the window limiting the number of outstand-
ing peckets before the retransmisgon timer expires.

In this paper, we aayze two alternative
retransmisson timersfor TCP. Although, we only focus
on TCP, we believe that our conclusions aso apply to
other reliable end-to-end and link layer protocols. We
first study the RTO propased in [6], and the implemen-
tation of that RTO and its corresponding REXMT as
documented in [24]. We refer to that implementation o
TCPasTCP-Litesinceit is part of the 4.4BSD-Litedis
tribution o the BSD (Berkeley Software Distribution)
operating system. The BSD networking stack has been
ported to various operating systems running on hun-
dreds of thousands of serversand clientsonthe Internet.

Inthefollowing, werefer to TCP-Lite sretransmis-
sion timer as the Lite-Xmit-Timer. After revealing a
number of problems of the Lite-Xmit-Timer, we pro-
pose an alternative retransmisgon timer which we all
the Eifel retransmission timer, and refer to it as the
Eifel-Xmit-Timer™. In the following, we use the indices
L (Lite) and E (Eifel) as qualifiers for ametric when re-
ferring to its definition or implementation. We omit
those qualifiers when discussing a particular metric in
generd . The foll owing set of equations define RTO, . In
its implementation, RTO, is updated every time the
sender completes a new RTT measurement, denoted as
R-l_rSampIe-

DELTA = RTTg, 1o~ SRTT,

p
SRTT, = SRTT, +l DELTA
[Ltg™ L
1
RTTVARL = RTTVARL + A_l x (‘DELTAL‘ - RTTVARL)

RTO, = MA)((SRTTL +4xRTTVAR, ,2x ticks)

SRTT is the so-called smoothed RTT estimator.
SRTT, isalow-passfilter that memorizesaconnection's
RTT history with a fixed weighing factor of 7/8.

1. TheEifd isthe name of a beautiful mountain range in
Western Germany.

DELTA is the difference between the latest RT Tggyypie
and the current SRTT.. RTTVAR is the so-called
smoothed RTT deviation estimator. Through RTTVAR,
the RTO accourts for variationsin RTT. RTTVAR, isa
low-pass filter that keeps a memory of a connection’s
RTT deviation history with a fixed weighing factor
of 3/4. Werefer to the constants 1/4 and 1/8 as the esti-
mator gains and to the mnstant 4 as the variation
weight. Little motivation aher than implementation ef-
ficiency is provided in [6] for this particular set of con-
Stants.

REXMT and RTO are maintained in multiples of
ticks, i.e., some fraction d a second that is operating
system dependent. This is also referred to as the timer
granularity. Because of the heartbeat timer (explained
in Section 3.4) implemented in TCP-Lite, aminimum of
2ticksisrequired for RTO, .

We i the time that has elapsed since asegment
was ent the age of a segment. Likewise we refer to the
oldest outstanding segment as that segment in the send-
er's end buffer with the highest age. That segment also
carries the lowest sequence number of all outstanding
segments. It is the segment that gets retransmitted when
REXMT expires. TCP-Lite maintains asingle REXMT
per TCP connection. When a segment is snt and
REXMT, is not active, it is started (initialized with
RTO,). When an ACK arrives that acknowledges the
oldest outstanding segment and more segments are till
outstanding, REXMT|_isre-initialized with RTO, .

We briefly summarize related work concerning the
Lite-Xmit-Timer. Karn’salgorithm[11] must be imple-
mented in TCP[3]. It preventsaclamped RTO by ignar-
ing the RTTg 4y e derived from a retransmission and
doubling the RTO (exporential timer backoff) up to a
maximum of two times the maximum segment lifetime
[3],i.e, 240 seconds, each time REXMT expires for the
same segment. This makesit posgble to eventually col-
lect a valid RTTgnpe again. Otherwise, the sender
might get stuck retransmitting the oldest outstanding
segment while the RTO is clamped at too low a value.
The authors of [4] remove an inaccuracy in the imple-
mentation of RTO, that made it more mnservative than
intended in its definition. This has been updated accord-
ingly in later TCP implementations (e.g., in the
FreeBSD operating system). Through trace-driven sim-
ulation, the Lite-Xmit-Timer and some of its variations
are evaluated in [2] against a large set of real measure-
ments. The aithors conclude that the RTO minimum (2
x ticks) dominates the performance of the Lite-Xmit-
Timer and that its performance can be further increased
when atimer granularity of 100 msor lessisimplement-
ed. However, that study also concludes that the estima-
tor gains and the RTT sampling rate (explained in
Section 2.2) have littleinfluence on the Lite-Xmit-Tim-

er's performance. We disagree with those two conclu-
sions. On the contrary, we show in Section 3.2 and
Section 5.1 that, in some @ses, the RTT sampling rate
greatly influences the Lite-Xmit-Timer’s performance.
Furthermore, we show in Section 3.2 and Section 4.2
that when the RTT sampling rate is high and the TCP
sender’s load is large, the choice of the estimator gains
and the variationweight becomes crucial. Moreover, we
argue that the definition of the estimator gains and the
variation weight should depend onthe RTT sampling
rate.

The rest of the paper is organized as follows.
Section 2 describes our model- and measurement-based
anaysis approaches. We use the model to analyze the
Lite-Xmit-Timer and explain its problems in Section 3.
We further apply the model to develop the Eifel-Xmit-
Timer in Section 4. We use measurements in an experi-
mental network to validate our model-based analysis,
and aso to validate our implementation of the Eifel-
Xmit-Timer. This is explained in Section 5. Section 6
summarizes our conclusions and oulines our current
and future research.

2. AnalysisMethodology

We developamodel of the dass of network-limited
TCP bulk data transfers in steady state which we de-
scribein Section 2.1 and Section 2.2. In Section 2.3, we
describe the measurement setup that was used for vali-
dation purposes.

2.1 Choosing a “typical” TCP Connection

TCP s operation and performance is largely deter-
mined by the path’s metrics such as available band-
width, end-to-end ddlay, and pecket drop pettern.
Ideally, a well-designed retransmisson timer should
perform well over any possible end-to-end peth. In the
Internet, however, those path metrics can vary consider-
ably over short andlong time scales[18]. Consequently,
thetypical TCP conrection daesnot exist. Thismakesit
particularly difficult to validate the design d aan end-
to-end retransmisson timer. Our approach is therefore
to study one common class of TCP connectionswhichis
frequently found in the Internet, yet, is smple enoughto
allow for a model-based analysis.

A TCP sender’sload, i.e., the number of segments
outstanding at agiven time, is either limited by the flow
control imposed by the receiver or by the congestion
control (implicitly or explicitly) imposed by the net-
work?2. Accordingly, one refers to such connections as
being receiver- or network-limited.

2. Inaddition, a TCP sender’s load may dso be limited by
the size of the TCP sender’s ®nd bufer.

One Congestion
Avoidance Cycle
RTT Samples of
the same Flight

RTT

Bottleneck Link
Service Time

TimeOfDay
Figurel: TheRTT in steady state.

We study the dass of network-limited TCP bulk
datatransfersin steady state. I n this case the sender goes
through periodic congestion avoidance cycles during
which it linearly increases the load onthe network until
it receives a congestion signal. It then halves the load
which eff ectively means that it does not send any more
segments for one half the RTT. This gives the queue &
the bottleneck link time to drain. We further assume a
non-shared batleneck link with afixed bandwidth anda
fixed bottleneck buffer size. The sender aways snds
fixed size segments. In addition, we assume that the
sender fully utilizes the bottleneck link at any padnt in
time. The latter has the eff ect that whenever the sender
increases theload by ore segment, that thiswill increase
the queuelength at the bottleneck by ore. Consequently,
the RTT increases by the segment’s rvice time at the
bottleneck link. It aso yields a maximum RTT that is
twice the minimum RTT asillustrated in Figure 1.

We refer to the segments a sender sendsper RTT as
aflight of segments or simply flight. For network-limit-
ed connections, a flight comprises those segments that
are sent at agiven load, i.e., the segments sent between
load increases. Given our assumptions, the RTT of a
given flight within one congestion avoidance cycle is
the sum of the RTT of the preceding flight and a seg-
ment’s service time & the bottleneck link (see Figure 1
where each dot in the graph denotes one RTT sample).

TCP conrectionsthat fulfill these assumptions can,
e.g., be found in situations where the access link (e.g.,
low bandwidth dial-up a wide-area wirelesg becomes
the bottleneck link, and ory asingle application creates
traffic. The analysis of areceiver-limited conrection in
such a situation is trivial asthe RTT is constant in that
case.

2.2 Modd-based Analysis

Given an RTT that evolves in a deterministic and
recurrent manner as outlined in Section 2.1, the RTO
doesalso, asit isafunction d RTT. Thus, we have cho-
sen to model the RTT, the RTO, and all other relevant
sender-side annection state variables on a spread sheet
[14]. We make the following additional assumptions:

* RTT sampling rate

We refer to the RTT sampling rate & the number of
RTT samples the TCP sender captures per RTT di-
vided by the sender’sload. In our model, we assume
that every segment is timed to measure the RTT. In
this case, the RTT sampling rate is 1 if the receiver
acknowledges every segment, and it is 1/2 if the re-
ceiver usesdelayed ACKs[3]. In “standard” TCPim-
plementations only one segment per flight is timed,
i.e., the RTT sampling rate is the reciprocal of the
sender’sload. The closer the RTT samplingrateisto
1 the more acurately the RTT is measured. Timing
every segment is commonly implemented using the
TCP timestamp option [10].

 Explicit congestion signal

We asaume that congestion is signalled explicitly
[2]] at the end d each congestionavoidance ¢y/clein-
stead of through a dropped packet [1], [6], [8]. This
simplifies the model-based analysis without limiting
it.

e Timer granularity

To make our model independent of the impact of the
timer granularity (discussed in Section 3.4) we model
“time” in terms of ticks which can be abitrarily de-
fined.

On our spread sheet, columns correspondto a spe-
cific connection state variable (e.g., the RTT or the
RTO) androws correspond to the arrival of anew ACK,
i.e, a new RTT sample. Thus, the “Time of Day”
progresses from one row to the next by the bottleneck
link’s srvicetime. The spread sheet has a number of pa-
rameters including the segment size, the bottleneck
link’ s bandwidth and bufer size, and the end-to-end la-
tency. Those are used to instantiate the spread sheet to
reflect a specific connection, i.e., aspecific evolution o
RTT. In the following we refer to such an instantiation
of the spread sheet as “the model”. The mentioned pa-
rameters itself are lessimportant for our analysis. What
mattersisthe sender’ sload at the end of each congestion
avoidance gycle. Thisisdiscussed in Section 3.2.

2.3 Measurement-based Analysis

Our goal isto reproduce a mnnection with charac-
teristics as close as posshle to a mnnection we @n
model using the technique and the asumptions de-
scribed in Section 2.1 and Section 2.2. For that purpose,
we used a single hop network consisting d two hasts
running the BSD/386Version 3.0 operating system that
are inter-connected by a direct serial cable (see
Figure 2). We used the the BSD Packet Filter [7], [17]
to coll ect packet traces.

@ Direct Cable @ 2.4 Kb/s @
=]

= MTU = 1500 bytes .
Sender (BSDi 3.0)

Figure 2:

M easurement Setup.

In addition, we deliberately configured this stupto
yield RTTsthat are several multiples of the timer gran-
ularity implemented in BSD/386 (500 ms) to study the
RTO at asufficient resolution. This can be achieved by
using large packets and a low bottleneck link speed to
create large transmisson delays, and by allowing large
queueing buffersto create large queueing delays. In par-
ticular, we chose a link speed o 2.4 Kb/s, configured
the maximum receive unit of the Point-to-Point Protocol
[22] to 1500 bytes, and set the size of the interface buff-
er (IFQ_MAXLEN [24]) to 40 packets. With these set-
tings, the RTT at the end of a congestion avoidance
cycle is about 250 seconds® or 500 ticks (). Although
we do not believe that such settings are commonly
found, our conclusions are not materialy affected by
them. We could have obtained simil ar results by choos-
ing a higher link speed and a smaller queueing bufer,
but that would have required alower timer granul arity.

We dways measured a single TCP connection at a
time with the TCP timestamp option enabled. Thetrans-
misgon delay for a segment in this ®tup is too high to
trigger delayed ACKs. Consequently, we dways mea-
sured with an RTT sampling rate of one. The only dif-
ference to the model of this conrection is that the TCP
sender in the measurements had to rely on a dropped
packet and the correspording three dupicate ACKs [8]
asthe congestionsignal . The minor impact of thisdiffer-
enceisdiscussed in Section 5.

3. ldentified Problemsof the Lite-Xmit-Timer

In this ction we explain four major problems of
the Lite-Xmit-Timer. The first two are fundamental
flawsin the definition o RTO, while the latter two con-
cern the implementation of REXMT, . While the first,

3. 40 padkets of 1500 bytes draining from the interface
buffer at 240 bytes/s.

third, and fourth problems make the Lite-Xmit-Timer
more conservative, the second problem makes it more
aggressve. However, the latter is usually out-weighed
by the other three factors.

3.1 Prediction Flaw when the RTT Drops

RTTVAR, is calculated using the absolute value of
DELTA, . Althoughthis is the mathematically correct
definition of the mean deviation, it is not motivated in
[6] whether using the mean deviation in this strict man-
ner is an appropriate design choice. The undesirable be-
havior this causesisthat the predictor (RTO,) “ goes up”
when the signal “goes down”. More precisely, it causes
the RTOtoinitialy increase after the connection' sRTT
has dropped to the extent that it falls below SRTT, i.e,
when DELTA becomes negative.

(ms)

9000

8000 4 A S oY
1 ARTO-Lite (-1)
7000 [
[
6000 4 [\
A

5000 -

[[\
[4 [
[(Y
PN \ | \ | \
) i S
#of) £ f o f \ 1
fo A £ 3 £ \ {
P Nl Nl Lo
4000 y f R {
3000 o SRTT-Lite (i)

2000 RTT (i)

1000 A

0

100 110 120 130 140 150 160 170
TimeOfDay (s)

Figure3: Prediction Flaw in RTO, .

In those cases, the dfect on RTO is the same as if
RTT hadincreased by the same amourt. Thisleadsto an
RTO that largely over-predicts the RTT, and it takes
some time until the RTO has decayed to a reasonable
level. We illustrate this in Figure 3 generated from the
model described in Section 2.2. The model was config-
ured to asender’s maximum load of 10andatimer gran-
ularity of 1 ms. Asin al following figures we use the
notation RTT(i) to denote the i-th RTTgyyy e fOr which
the @rrespondng RTO, RTO(i-1), was determined
from the previous, the (i-1)-th, RTTgyppe

3.2 Failureof the“Magic Numbers’

The Lite-Xmit-Timer has been defined under the
asumption that only one segment per flight was timed.
The estimator gains (/8 and 1/4) and the variaion
weight (4) have been tuned to that case. However, if the
RTT sampling rate is higher and the sender’s load is
large, the fixed estimator gains and the fixed variation
weight (the “magic numbers’) fail. The problem in that
case is that the Lite-Xmit-Timer’s variation weight is
too low to raise the RTO to a sufficient level, while its
estimator gains are too hHgh. This causes SRTT, and

Time (x 500 ms)
1000

1
900 I

e

+
800 I
L RTO-Lite (i-1)
[

700+
600

500 ¢

i

1
4
4
i
i
i

4004

3004

RTT (i)

2004

1004

0
10000 12000 14000 16000 18000 20000
TimeOfDay (x 500 ms)

Time (x 500 ms)
520

500

480
4 RTO-Lite (i-1)
\

460

420

400 T T T
16000 16500 17000 17500 18000
TimeOfDay (x 500 ms)

Figure4: A Collapsed RTO, (modd).

RTTVAR, to decay too quckly. Thus, RTO, collapses
intothe RTT, i.e., RTO, becomestoo aggressve. Weil-
lustrate this in Figure4 where the lower graph is a
“zoom” of the upper one. The graphs are based on the
model configured to asender’ smaximum load of 40and
atimer granularity of 500 ms. In theory, the gggressve
RTO, shoud lead to many spurious retransmissions. In
practice, thisisnot the cae for the reasons explained in
Section 3.3 and Section 3.4.

3.3 The*REXMT-Restart Bug”

The problem with the implementation d REXMT_
is that it is re-initialized with RTO, when an ACK ar-

Sequence Number
62000

61000 F—— o Datagrams

60000 |16 ACKs
59000

58000
57000

.
. le
56000 le—2 15t REXMT—}

*
*
)
55000 kt-oﬁsel-b
54000 -

53000

52000 *
50 55 60 65 70 75

o

t3C

2nd REXMT »

* *
s+ o |eRTO=7Tsple—RTO=145—3]
-

LAY

85

80
Time of Day (s)

Figure5: The “REXMT-Restart Bug’.

rives acknowledging the oldest outstanding segment,
and more segments are still outstanding. This does not
account for the age of the (new) oldest outstanding seg-
ment. Thus, before the first timeout occurs, REXMT, is
the sum of RTO, and the age of the oldest outstanding
segment which during buk data transfer roughly corre-
sponds to the RTT (denoted as “offset” in Figure 5).
This makes REXMT, significantly conservative. We
have described this problemin [12].

3.4 Timer Granularity

Given that the RTO is a prediction of the upper
bourd of RTT, the higher thetimer granularity, the more
imprecise and consequently the more conservative the
RTO. Thus, a low timer granularity is desirable. As a
rule of thumb we daim withou proof that the timer
granularity should at least be an order lessthanthe RTT.
For example, given that worst-case RTTs commonly
found in the wide-area Internet today are onthe order of
a few 100 ms, the timer granularity shoud at least be
10 msor afew multiples of that. Hence, the timer gran-
ularity of 500 ms, chosen for TCP-Lite is inadequate.
That is one reason why the Lite-Xmit-Timer is so con
servative. This isaue has been raised many times in the
research community. It motivates why other operating
systems (e.g., Solaris) have been implemented with a
finer timer granularity. In addition, a timer granularity
of 500 ms obviously defeats the purpose of putting
much effort into the formula that determines the RTO
when the RTT never grows beyond afew 100 ms.

The problem with REXMT isthat it is based ona
so-called heartbeat timer provided by the BSD operat-
ingsystem. It expires every 500 ms, triggering aspecific
interrupt routine that updates the REXMT,_ (decrements
it by oretick) of each active TCP connection. It does
independent of whether one of those REXMT, would ac-
tually goto zero or not. Simply increasing the frequency
of the heartbeat timer would therefore result in a waste
of valuable processng power to handle dl the “useless’
interrupts. That can become agreat problem for busy
Web servers that might have to handle thousands of
TCP conrections smultaneously. The heartbeat timer is
also the reason for the minimum defined for RTO, be-
cause aREXMT|_ of 1 tick can expire anywhere between
0 - 1tick.

4. TheEifel-Xmit-Timer

Our motivation for developing the Eifel-Xmit-Tim-
er is to eliminate the problems of the Lite-Xmit-Timer
explained in Section 3. The RTOg is defined by the fol-
lowing equations which we explain in the following
sub-sections.

DELTA. = RTTg, 1.~ SRTT,
CWND
_ 0
FLIGHT, = MAXESSTHRESH, SO+t
O—2L ifRTT Sampling Rate = 1
CFLIGHT. ping
0 E
g
GAIN_ = B2 it RTT Sampling Rate = =
e~ BFuigHT, 2
0
g 1)
E 5 if LRTT Sample per RTT
[GAIN_, if (DELTA_-RTTVAR)20
0
GAIN, = ,
CGAING”, if (DELTAC—RTTVARy) <0

SRTT. = SRTT_ + GAIN_ x DELTA_

ERTTVARC + GAIN_ x (DELTA_-RTTVARY), if DELTA_20
RTTVAR =

CRTTVAR_, if DELTA_<0
0 E E

1
0
GAIN, x RTTVARED, RTTSampIe

RTO. = MAX %RTTE + +(2x ticks)%

4.1 Predicting a Decreasing RTT

To avoid the problem described in Section 3.1, we
define RTTVARE to remain constant when DELTAg is
smaller than zero. In that case RTOg decreases only as
fast as SRTTg decreases. This is illustrated in Figure 6
using the same parameters chosen for the model dis-
cussed with respect to Figure 3.

(ms)

9000

8000 - “
[A\RTO-Lite (1)
7000 - [

i ‘ " .
6000 4 | RTOEifel (1)

d

5000

T I
i \ I\
A AL
Pt - \ =L
£oHA Y S £
‘l“\A“ AA A‘ ﬁ‘x“ - “/A‘““A“ “ ‘K“
Pl N A oA A A
4000 0./.___[.— f ““‘-.“ S f
) |]
3000 - SRTT-Eifel () ,.—II

2000 RTT (i)

1000 A

0

100 110 120 130 140 150 160 170
TimeOfDay (s)

Figure6: Fixingthe Prediction Flaw with RTTVARE.

With this subtle change in the definition of
RTTVAR, RTOg does not exhibit the spikes seen with
RTO, when the RTT drops. Also, note that the graph of
REXMT, (not shown in Figure6 to na overload the
plot) liesroughly one RTT “above” the graph of RTO_
because of the problem described in Section 3.3. The
graph o REXMTE, on the other hand, isidentical to the
graph o RTOE for the reason described in Section 4.5.

4.2 Scaling the Gains and the Variation Weight

To avoid the problem described in Section 3.2, we
remove the constant estimator gains. We replace them
with a single gain for both SRTTg and RTTVAR that

scdeswith the sender’ sload and which also dependson
the RTT sampling rate. If more than ore segment is
timed per RTT, theideaisto distribute the entireweight
of 1 equally over the number of RTT samples per flight,
i.e., to limit the memory of both estimatorsto ore RTT.
With an RTT sampling rate of 1 thisleads to an estima-
tor gain which isthe reciprocal of the sender’sload, and
it leads to twice that gain when delayed ACKs are used.
If only one RTT sampleisobtained per RTT, we define
our own “magic number” of 1/3 as the estimator gain.
We have verified with the model and a broad range of
parameter settings (especially with a small maximum
for the sender’ sload) that this constant leadsto an RTOg
that is sufficiently safe against spurious timeouts.

Likewise, we define the variation weight as the re-
ciprocal of the estimator gain and thereby also make it
scade with the sender’s load. In a situation where the
RTT hasremained constant for a“long time” (i.e., when
RTTVARg has become zeo and SRTTg has converged to
the RTT) and the RTT suddenly increases, this ensures
that RTOg is the sum of SRTTg and DELTAE?.

Various aternatives exist to define FLIGHTE. Itis
only important that it corresponds to the sender’s load.
In fact, one could define FLIGHTE as the adual load at
any point in time as that can be derived from the sender-
side TCP state. However, we foundthat that can be too
noisy, leading to many RTOg spikes. We have therefore
chosen to approximate alower bound for the sender’s
load. The slow start threshold [6] (SSTRESH) is an ap-
propriate candidate for that. In the common case the
slow start threshold equals half the congestion window
(CWND) [6] but not necessarily, e.g., whenthe available
bandwidth increases. In that case, we use haf the mn-
gestion window to determine the approximation o the

Time (x 500 ms)
1000

900 1
{IRTOLile (1)

800

{
700 4 t RTO-Eifel (i-1)

600 -
500 -
400

300 +

RTT (i)

200 +

100 1

0 T T T T T T
16000 18000 20000 22000 24000 26000 28000
TimeOfDay (x 500 ms)

Figure7: RTOg scalesthe sender’s load (model).

4. Inthose situations the minimum defined for RTOg (see
Sedion 4.4) would become dfective. Thus, to be more
conservative, one might also define the variation weight
asM/GAINE withm=2, 3,4, ...

lower bound d the sender’ sload. We ald the mnstant 1
in the definition o FLIGHTE because the number of
segmentsin thefirst flight of acongestionavoidance ¢y-
cle eguals (SSTRESH + 1) or (CWND/2 + 1). In that
case both terms are gjua. With those cthangeswe arive
a an RTO where the fraction RTO/RTT remains fairly
constant (see Figure 7).

4.3 Shock Absorbers

In aur initial definition o RTOg we were seeing the
same effect that can, e.g., be seen in Figure 6 with re-
spect to RTO, . Therethe RTO, increaseswhen RTT in-
creases. However, theincrease phase of RTO, ends half
way through each flight. Then the RTO, decreases rap-
idly during the second Helf of each flight. This can be-
come problematic when the sender’s maximum load is
small. At the end o a each flight, the RTO, might get
tooclosetothe RTT. To avoid that, we defined the gain
for RTTVARg to be the square of GAINg whenever
RTTVARg isdecreasing. We call this the “shock absorb-
er effect”: the variation gaes up quickly but comes down
slowly. As with the estimator gains, no constant would
have worked to slow the decrease of RTTVARE. We
therefore, again, chose to make that inverse propartional
to the sender’ s load. We therefore multiply GAINg with
VFLIGHTE. Thishasthe df ect that RTOg stays roughly
a the same level during the second hlf of each flight
(see the graph of RTOg in Figure 6).

44 TheRTO Minimum

The RTO minimum should be seen as hecessary to
protect against spurioustimeoutsin situations wherethe
RTT isclose to or even below the timer granularity. In
all other cases, the minimum shoud have no effect. If it
does, then this clearly shows that the RTO has failed as
apredictor of an appropriate upper boundfor the RTT.
When using a heartbeat timer, the RTO minimum must
at least be 2 ticks as discussed in Section 3.4. In addi-
tion, it seems reasonable to have the RTO not drop be-
low the latest RTT sample. This had already been
implemented in the FreeBSD operating system. This
motivates our definition o the minimum for RTOE.

45 Implementing REXMT Precisely

Eliminating the problem described in Section 3.3 is
straightforward. In our implementation d the Eifel-
Xmit-Timer, we simply store the timestamp of when
each segment is sent in a dynamic data structure. That
way we always know the gge of the oldest outstanding
segment and can implement REXMTg according to the
following definition.

RE)(MTE = RTOE —' Age of oldest outstanding segment’

In situations where a @nrection daes not have
enough segments in flight to trigger the fast retransmit
algorithm[8],i.e., when error recovery hastorely onthe
retransmisson timer, REXMTg can greatly improve the
end-to-end performance compared to REXMT, .

400000

350000 s
Rexmt-Eifel o

300000

250000

200000

Sequence Number

150000

100000

50000

0

0 100 200 400 500 600

300
Time of Day (s)

Figure8: Restarting REXMTg predsely.

To demonstrate that we configured our experimen-
tal network described in Section 2 to a link speed of
9.6 Kb/s and set the interface buffer to a size of one
packet. This meant that no more than three segments
werein flight at any point in time, effectively disabling
the fast retransmit algorithm. In Figure 8, we compare
REXMT, with REXMTg using RTO, in both cases to
isolate the improvement that is achieved by restarting

118000

113000 L]

108000

103000 -

Sequence Number

©
8
8
8

93000 .

=] + Snd_Data

88000 B
oSnd_Ack

83000
125 135 145 155 165 175 185
Time of Day (s)

118000

113000 L]

108000

103000 . Rexmt-Eifel

Sequence Number

©
8
8
8
.

93000 .

.o +Snd_Data

88000 | * O
oSnd_Ack

83000

100 105 110 115 120 125 130 135 140 145
Time of Day (5)

Figure9: Zoom of the graphs shownin Figure 8.

REXMT precisely. In this case, REXMTg improves the
end-to-end throughput by almost 30 percent due to the
quicker recovery of the periodically dropped segments.
Figure 9 shows a detailed view of sections of the two
graphs shownin Figure 8. For REXMTE one can see that
the timeout occurs before athird duplicate ACK would
have been received by the sender, had the receiver sent
that ACK. To avoid the resulting competition between
timeout-based error recovery and the fast retransmit al-
gorithm, the Eifel algorithm [13] suppresses the fast re-
transmit, and restores the slow start threshold and the
congestion window asif the timeout had not occurred.

4.6 Adapting to Spurious Timeouts

The Eifel algorithm [13] alows a more optimistic
retransmisson timer because it ensures that the penalty
for underestimatingthe RTT isminimal. In the common
case, the only penalty is a single spurious retransmis-
sion. With that in mind and given that in steady state
RTOg/RTT is a fairly constant fraction, we @an go le-
yond the given definition o RTOg and multiply it with
afactor smaller than ore. That gets RTOg closer to RTT.
But what should the value of that factor be?

CYCLE = gx MAXCWND®

O k "
AGG x B*L - CYCLEE for eatvalid RTTg, /o

AGG =
% MIN%AGG + i x (1-AGG), 1% for eadh spurious timeout

[}

RTO, g = AGG xRTO_

Instead of finding a constant factor, we experiment
with the idea of having the factor adapt to the number of
spurious timeouts that occur during the lifetime of a
conrection. We let the RTO become increasingly ag-
gressve, i.e, let it converge to RTT, until a spurious
timeout occurs, and then back it off to amore wmnserve-
tive level before it becomes more aggressve aggain. We
propaose an adternative definition provided above for the
RTO which we call RTOpgg using an adaptive factor
which we call AGG (aggressve).

CYCLE is the well known formula (e.g., see [16])
that determines the number of segments snt within the
last congestion avoidance ¢yclewhich ended with acon-
gestionwindow of MAXCWND (in multiples of the seg-
ment size). The factor k (0< k< 1) determines how
quickly RTOpgg converges to RTT. For example, k =
0.1 reduces AGG (0 < AGG < 1) by rougHy 10 percent
per congestion avoidance cycle.

We illustrate this in Figure 10, based on the model
configured to a sender’'s maximum load of 26
(= MAXCWND), atimer granularity of 1 ms, and a fac-

(ms)
450

400 RTO-AGG (i-1)
350
300
250
200
%0 RTT (i)

100

50

5 10 15 20 25 30 35
TimeOfDay (s)

Figure 10: A self-trained RTO.

tor k of 0.05. Clearly, more research isrequired to deter-
mine areasonable value for k.

5. Measurement-based Analysis

To validate that the model described in Section 2.2
and applied in Section 3 and Section 4, we performed
the measurements described in Section 2.3. In addition,
we performed measurements to study RTO, and RTOg
in case only one RTT sampleis collected per RTT.

5.1 Collectingonly asingleRTT Sampleper RTT

To see how RTO, performed when orly a single
RTT sample was collected per RTT, we repeated the
measurement described in Section 2.3 while disabling
the timestamp option. The result is shown in Figure 11.
Althoughthe spikesin the graph o RTO,_ still occur for
the reason described in Section 3.1, at least the estima-
torsgains andthe variationweight work. Thus, the prob-
lem described in Section 3.2 only occurs when the RTT
samplingrateisone or closeto one. Figure 12 showsthe
same situation for RTOg. The graph d RTOg does not
look much different from that of RTO, in Figure 11, ex-
cept that it doesnot have those spikes at the end o acon-
gestion avoidance ¢ycle.

Time (x 500 ms)

1400

1200
1000 |RTOLite (-1)
800 B L
600

400

200

0 T T T T T T T T
22000 24000 26000 28000 30000 32000 34000 36000 38000 40000
TimeOfDay (x 500 ms)

Figure11: RTO, whentiming ore segment per RTT.

(x 500 ms)
700

600

RTO-Eifel (-1)
500

400
RTT ()
300

200

100

0
19000 21000 23000 25000 27000 29000 31000 33000 35000
TimeOfDay (x 500 ms)

Figure12: RTOg whentiming ore segment per RTT.

Ancther phenomena @an be seen when comparing
Figure 11 and Figure 12. Although the maximum RTT
isabout 250 secondsin bah cases, theminimum RTT is
quitedifferent. Thisisdueto the TCP sender’ s “choice”
abou which segments get timed to collect an RTT sam-
ple. If asegment getstimed just before the end o a con-
gestionavoidance cycle, the RTT ishigh, and it will take
the duration of that RTT until the next segment istimed.
However, during this phase of the connection the queue
at the bottleneck has drained and already begun to build
up again. Thus, during that time the RTT had dropped
and slowly increased again. This had gone unnoticed by
the TCP sender that was still waitingto collect the (high)
RTT sample. On the other hand, if the timing d a seg-
ment ends dhortly after the end o a mngestion avoid-
ance cycle, thefollowing low RTTs get sampled, too.

5.2 Validating the M odel

As avalidation of the model we decided to repro-
duce the plots shown in Figure 4 which were generated
from the model. Thus, we chose the parameter settings
for our measurement setup as described in Section 2.3.
Figure 13 shows the measurement result. Althoughwe
do not get an exact match, it is obvious that the trend of
the graphs are identical. This asaured us that our model
is correct. Hence, we validated in practice what we had
dready predicted with our model in Section 3.2.

(x 500ms)
1600

1400

1200

e

'RTOLite (-1)

1000
800

600

|
|
|

pere———— S

23000 25000 27000 29000 31000 33000 35000 37000
TimeOfDay (x 500ms)

(x 500ms)
600

580
560

540

520 = [Mo,

4 RTO-Lite (i-1)
500 / .\M‘-‘
O [RTT() "
480] . [

460
440

420

400
33000 33200 33400 33600 33800 34000 34200 34400 34600 34800 35000
TimeOfDay (x 500ms)

Figure 13: A Collapsed RTO, (measured).

5.3 Validating the Implementation of RTO-Eifel

As avalidation d our implementation of RTOg we
decided to reproduce the graph of RTOg shown in
Figure 7 which was generated from the model. Again,
we chose the parameter settings for our measurement
setup as described in Section 2.3. Figure 14 shows the
measurement result. A comparison yields a dose match.
Given that we know from Section 5.2 that the model is
correct, we now have also validated that the implemen-

(x500ms)
900

800

—_— :

700 RTO-Eifel (1)

600
e

500

400 RTT ()

30000 32000 34000 36000 38000 40000 42000
TimeOfDay (x 500 ms)

Figure 14: RTOg scaeswith sender’s load (measured).

tation of RTOg is correct in the sense that it conformsto
the definition o RTOg provided at the beginning of
Section 4.

We have deliberately plotted the graph o RTOg
without connecting lines to highlight the gap after each
congestion avoidance cycle. During that time the TCP
sender received a series of duplicate ACKs that trig-
gered thefast retransmit and fast recovery algorithm. No
valid RTT samples are derived from those duplicate
ACKswhich causesthe gapsin the graph. Thisisdiffer-
ent in our model for which we have modeled explicit
congestion notification.

6. Conclusion and Future Work

In this paper, we analyzed two adternative
retransmissontimersfor TCP. Wefirst studied the Lite-
Xmit-Timer which is the retransmission timer found in
most implementations of TCP today. After reveding
four major problems with the Lite-Xmit-Timer, we pro-
pose an alternative retransmisson timer we all the
Eifel-Xmit-Timer. It eliminates these problems.

However, wedo na claim that the Eifel-Xmit-Tim-
er is a sufficiently mature solution at this dage. More
testing and erification urder various network cond-
tions, e.g., following the approach suggested in [2], is
certainly required. We encourage further research in this
area, and have therefore made our model [14], and our
implementation [15] of the Eifel-Xmit-Timer publicly
available. Still, our analysis allowed usto draw a num-
ber of conclusions that apply in genera to any future
end-to-end retransmisgon timer:

¢ RTT samplesthat fall below the smoothed RTT es-
timator (SRTT) should na be used to update the
smocthed RTT deviation estimator (RTTVAR).

* The estimator gains and the variation weight need
to be dependent onthe RTT sampling rate.

« If every segment istimed to measurethe RTT, e.g.,
by using the timestamp option [10], the estimator
gains and the variation weight need to be scaled with
the sender’ s | oad.

Apart from correcting the problems of the Lite-
Xmit-Timer, we have proposed a new retransmisson
timer feature. Theideaistolet the RTO becomeincreas-
ingly aggressve, i.e, let it converge to RTT, while
adapting it to the number of spurioustimeoutsthat occur
during the lifetime of a cnrection. This feature relies
on the use of the Eifel algorithm [13]. The Eifel algo-
rithm allows to detect whether a timeout was urious,
and minimizes the number of spurious retransmissons.
Especidly interactive request/response-style applica
tionswill benefit from the quicker lossrecovery provid-

ed byamore gygressve RTO. However, more research
is needed to find the right level of aggressiveness of
such an RTO.

The strength of our work liesin its hybrid analysis.
We developed models of both retransmisgon timers for
the classof network-limited TCP bulk data transfersin
steady state. With that model we were aleto predict the
problems of the Lite-Xmit-Timer's RTO. We also used
that model to develop a new RTO for the Eifel-Xmit-
Timer. We then validated ou model-based analysis
throughmeasurementsin areal network that yielded the
same results.

In ou future research we plan enhance our model to
work off an arbitrary RTT evolution. We will then fur-
ther verify the Eifel-Xmit-Timer by gathering “real
world” RTT traces which we then analyze with the en-
hanced model.

Acknowledgments

Many thanks to Sally Floyd, Vern Paxson, Ramesh
Govindan, and the CCR reviewers for comments on
earlier versions of this work.

References

[1] M. Allman, V. Paxson, W. Stevens, TCP Conges-
tion Control, RFC 2581, April 1999.

[2] M. Allman, V. Paxson, On Estimating End-to-End
Network Path Properties, In Proceedings of ACM
SIGCOMM 99.

[3] R. Braden, Requirements for Internet Hosts - Com-
munication Layers, RFC 1122, October 1989,

[4] L. S. Brakmo, L. L. Peterson, Performance Prob-
lemsin BSD4.4 TCP, ACM Computer Communica-
tion Review, 25(5), October 1995

[5] L. S. Brakmo, L. L. Peterson, TCP Vegas. End to
End Congestion Avoidance on a Global Internet.
IEEE Journal of Selected Areasin Communication,
Vol. 13, No. 8, October 1995

[6] V. Jacobson, M. J. Karels, Congestion Avoidance
and Control, Revised version of a paper that ap-
peared in Proceedings of ACM SIGCOMM 88,
available & http://ee.lbl.gov/, 1992.

[7] V. Jacobson, C. Leres, S. McCanne, t cpdunp,
available & http://ee.lbl.gov/.

[8] V. Jacobson, Maodified TCP Congestion Avoidance
Algorithm, Email to the end2end-interest mailing
list, April 30, 199Q available at ftp://ftp.ee.lbl.gov/
email/van].90apr30.txt.

[9] V. Jacobson, C. Leres, S. McCanne, t cpdunp,
available & http://ee.lbl.gov/.

[10] V. Jacobson, R. Braden, D. Borman, TCP Exten-
sionsfor High Performance, RFC 1323, May 19.

[11] P Karn, C. Partridge, Improving Round-Trip Time
Estimates in Reliable Transport Protocols, In Pro-
ceedings of ACM SIGCOMM 87.

[12] R. Ludwig, A Case for Flow-Adaptive Wireless
Links, Technical Report UCB//CSD-99-1053, Uni-
versity of California at Berkeley, May 1999.

[13] R. Ludwig, R. H. Katz, The Eifel Algorithm: Mak-
ing TCP Robust Against Spurious Retransmissions,
ACM Computer Communication Review, 30(1),
January 2000.

[14] R. Ludwig, Model of the TCP Sender Connection
Sate in Equilibrium, available at http://ice-
berg.cs.berkeley.edu, January 1999.

[15] R. Ludwig, TCP-Eifel, Patchesfor FreeBSD, avail-
able at http://iceberg.cs.berkeley.edu, October
1999.

[16] M. Mathis, J. Semke, J. Mahdavi, T. Ott, The Mac-
roscopic Behavior of the TCP Congestion Avoid-
ance Algorithm, ACM Computer Communications
Review, 27(3), July 1997.

[17] S. McCanne, V. Jacobson, The BSD Packet Filter:
A New Architecture for User-Level Packet Capture,
In Proceedings of the 1993 Winter USENIX Con-
ference.

[18] V. Paxson, Measurements and Analysis of End-to-
End Internet Dynamics, Ph. D. dissertation, Univer-
sity of California, Berkeley, April 1997.

[19] J. Postel, Internet Protocol, RFC 791, September
1981.

[20] J. Postel, Transmission Control Protocol, RFC793,
September 1981.

[21] K. K. Ramakrishnan, S. Floyd, A Proposal to add
Explicit Congestion Notification (ECN) to IP, RFC
2481, January 1999.

[22] W. Simpson, The Point-to-Point Protocol, RFC
1661, July 1994.

[23] W. R. Stevens, TCP/IP Illustrated, Volume 1 (The
Protocols), Addison Wesley, November 1994.

[24] G. R. Wright, W. R. Stevens, TCP/IP lllustrated,
Volume 2 (The Implementation), Addison Wesley,
January 1995.

