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Abstract 

Whole genome sequencing (WGS) is becoming the preferred method for molecular genetic diagnosis of rare 
and unknown diseases and for identification of actionable cancer drivers. Compared to other molecular genetic 
methods, WGS captures most genomic variation and eliminates the need for sequential genetic testing. Whereas, 
the laboratory requirements are similar to conventional molecular genetics, the amount of data is large and WGS 
requires a comprehensive computational and storage infrastructure in order to facilitate data processing within a clini-
cally relevant timeframe. The output of a single WGS analyses is roughly 5 MIO variants and data interpretation 
involves specialized staff collaborating with the clinical specialists in order to provide standard of care reports. 
Although the field is continuously refining the standards for variant classification, there are still unresolved issues asso-
ciated with the clinical application. The review provides an overview of WGS in clinical practice - describing the tech-
nology and current applications as well as challenges connected with data processing, interpretation and clinical 
reporting.
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Background
The human genome project was a ground-breaking scien-
tific endeavour that not only gave us a near complete map 
of our genetic code but also paved the way for new inno-
vative sequencing technologies and computational meth-
ods that have enabled the clinical application of genomics 
[1–4]. While DNA sequencing dates back to the late 
1970s [5], it was not until the beginning of the 90s that 
sequencing, with advent of semi-automized four-color 
dye sequencing [6], became available for routine clinical 

use. Since then, the development of Next Generation 
Sequencing (NGS), has revolutionized the field, enabling 
the analysis of entire genomes in a fast and cost-effective 
manner [7, 8]. At this stage the last hard-to-sequence bits 
of the human genome have been mapped, and hundreds 
of thousands of people have had their entire genome 
sequenced [9].

The capacity of NGS has steadily increased and with 
the latest generation of sequencing platforms, an entire 
human genome can be sequenced within 2 days at the 
price of a few hundred dollars. The relatively modest 
costs per analysis, combined with excellent data quality 
[10], make whole genome sequencing (WGS) a valuable 
source of information in many clinical situations. Com-
pared to other genomic analysis, archived WGS data 
moreover have the potential to serve as a lifelong com-
panion for patients that can be reanalysed and reinter-
preted several times along the patient journey.
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Similar to other medical developments, the clinical 
implementation of WGS requires that we closely consider 
advantages compared to the current practice, as well as 
the limitations and ethical issues of the technology. In 
this review, we describe the elements and concerns of 
WGS in clinical practice. Following the trail of the patient 
sample, we explain the technological platforms and the 
data infrastructure as well as the processing and interpre-
tation of the results. Finally, we outline and discuss the 
clinical applications, guidelines and clinical reporting.

Whole genome sequencing
NGS was originally referred to as massive parallel 
sequencing (MPS) [11] describing the parallel processing 
and sequencing of millions of DNA fragments in small 
vesicles or on a solid phase and the subsequent alignment 
of the sequence reads to a reference genome. The output 
of NGS has steadily increased since 2005 [8], where it 
was suitable for sequencing of smaller selected parts of 
the genome, to WGS that became possible around 2010 
and was FDA approved in 2018. The laboratory proce-
dures are relatively simple and can be performed in any 
conventional molecular biology laboratory. The general 
WGS workflow is outlined in Fig. 1.

Fig. 1  Schematic representation of the WGS laboratory 
and bioinformatics flow. Short-read WGS protocols can in general 
be divided into four separate steps: 1. Sample preparation, 2. 
Library preparation, 3. Cluster generation, and 4. Sequencing. 
Panel 1, WGS is routinely performed with DNA from EDTA or citrate 
stabilized whole blood or surgically removed or biopsy tissue. 
DNA is isolated by conventional methods, but to facilitate CNV 
detection high molecular DNA is preferred. Historically, WGS required 
a DNA amplification step, but with newer protocols this step 
is no longer needed. Omission of the amplification step eliminates 
the PCR-bias and provides a more uniform coverage and quality 
[12]. The library is generated by fragmenting the high molecular 
DNA followed by ligation of adapters that will bind to the linker 
DNA on the chip surface. Moreover, barcodes allowing pooling 
of samples from different patients on the same chip may be 
attached. Panel 2, The libraries are subsequently loaded onto a flow 
cell and placed on the sequencer, after which the individual DNA 
fragments are clonally amplified by a polymerase, generating 
small single-stranded clusters of the particular fragments. The 
sequencing is in principle a conventional Sanger sequencing [5], 
where elongation is initiated by the addition of a sequence primer 
and polymerase and the nucleotide sequence is determined 
by the incorporation of complementary fluorescent-tagged 
nucleotide terminators. The fluorescent signal from the incorporated 
terminators is detected by scanning the chip and the individual 
clusters with a high-resolution confocal fluorescence laser detector 
after every round of nucleotide incorporation. Panel 3, Data 
are compiled in a fastq file that is being transferred to the high 
performance computer (HPC). In the HPC the reads are mapped 
and compiled in a .BAM file before variants are called listed in a .
VCF file. Panel 4, The VCF is finally uploaded to the interpreters 
in the genomic laboratory for filtration, annotation and prioritization
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The major difference between WGS and other types of 
NGS analyses is basically that there is no sequence cap-
ture and the amount of data generated. Until a few years 
ago, the cost of WGS was relatively high, but with the 
advent of second-generation chips and improved chem-
istry, the pricing has become comparable to the major-
ity of other clinical diagnostic procedures. There exists 
a number of different NGS platforms. Each has its par-
ticular virtues but from a user perspective, it is mean-
ingful to distinguish between short- [7] and long-read 
sequencing [13]. Short-read protocols generate reads 
of < 300 base pairs (bp), whereas long-read sequencing 
can provide uninterrupted reads ranging from 10 kbp 
to several megabases depending on the technology [13]. 
Long-read sequencing improves the sequence phasing 
and it is the preferred method for solving larger haplo-
types and detection of complex structural variants and 
repeats. In comparison short-read sequencing is the most 
widely applied method for detection of smaller varia-
tions because it is fast and provides high -accuracy and 
-sequencing depth for smaller, as well as, larger vari-
ants [14] at a low cost per base. Short reads can also be 
employed for applications aimed at counting the abun-
dance of specific reads and expression analysis. Whereas, 
short read instruments are far more common, both plat-
forms are appreciated and, in many laboratories, they 
supplement each other. Procedures are being developed 
that will facilitate the generation of long reads on short-
read instruments, underscoring the complementarity 
of the methods. Nowadays short-read WGS protocols 
routinely provide 10 times (10X) coverage of more than 
95% of the human genome and a median coverage of 30X 
in a single analysis, and this is generally considered suf-
ficient for germline analysis. In order to identify minor-
ity clones, tumour analysis requires about 90X coverage. 
WGS is normally performed as paired-end sequencing, 
which enables more accurate read alignment and detec-
tion of structural rearrangements. Current, WGS proto-
cols take approximately four working days and they are 
less labour-intensive than panel or exome sequencing 
due to the absence of the capture and amplification step.

Due to the impressive technical performance of the 
many commercial solutions and the defined laboratory 
procedures, clinical WGS workflows can be accredited 
according to ISO 15189. Great efforts are made to auto-
mate procedures, since sample exchange is a significant 
source of error. Because WGS is unlikely to be repeated, 
and may be reanalysed if new clinical insights or causes 
of a particular disease are discovered, it is crucial to 
reduce the risk of sample exchange. The frequency of 

sample exchange is incompletely documented, but based 
on our experience from panel sequencing, we estimate 
that it occurs in approximately 1 out of every 3000 sam-
ples. To mitigate the risk of sample exchange, we recom-
mend that single nucleotide polymorphism (SNP_ID) 
surveillance is included for all WGS samples. This means 
that an independent patient sample undergoes panel 
analysis of a small number of highly polymorphic SNPs 
in parallel with the WGS sample, and that WGS data are 
only released for interpretation if the IDs match, and only 
match, the same individual. Additionally, manual pipet-
ting steps may be video monitored to enable the track-
ing of sample mixing. These measures have not only 
improved the detection of sample exchanges in the labo-
ratory, but also prior to arrival at the facility. Moreover, 
they provide an additional check for the correct family 
identification of trio samples.

Bioinformatics
WGS requires a robust computational infrastructure to 
ensure fast and reliable data processing [15]. While the 
turn-around-time for patients with stable conditions 
may not be critical, neonates or patients in unstable and 
severe conditions may require prompt analysis. Also, 
tumour analysis should also be swift in order to begin 
treatment as soon as possible [16]. Consequently, clinical 
WGS pipelines must fulfil a set of requirements concern-
ing both the physical computational and the software 
application infrastructure. The challenge is illustrated by 
the amount of data produced by WGS compared to large 
gene panels or exomes. Whereas, panel and exome anal-
yses generate about 0.15GB and 5GB raw data, the out-
put of a WGS analysis is about 30GB. The corresponding 
variant files (.vcf ) from gene panels or exomes are about 
7E-05GB and 0.04GB, whereas, WGS come near 1GB 
which corresponds to an increase in data of 13.000- and 
24-fold, respectively.

Figure 1 depicts the three most important steps in the 
data analysis pipeline: 1. mapping, 2. calling and 3. Inter-
pretation. Interpretation, is in principle independent of 
the variant calling and is performed by dedicated staff 
using third-party software with a graphical interface that 
enables interactive and flexible sorting annotation and 
filtering of the data. The creation of standardised end-
to-end variant calling workflows was pioneered by the 
open-source Genome Analysis Tool Kit (GATK) [17], 
which forms the basis for many clinical, academic, and 
national WGS centres. However, a number of commercial 
hardware-accelerated solutions such as DRAGEN™ and 
Sentieon® [18], as well as prediction-based approaches 
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are also available [19, 20]. None of these solutions are 
plug-and-play, and centres performing large-scale WGS 
analysis should be prepared to participate in pipeline 
development and maintenance to provide a safe, reliable 
and updated analytic environment.

In a production environment considerable engineering 
effort is dedicated to data handling, such as book-keep-
ing of IDs and linking clinical metadata. From these, at 
times complex, sources of information it is possible to 
automate a specific pipeline run, and transfer a tailored 
set of output files to their proper destination. The data 
management includes renaming files, generating deliv-
ery notifications, logs, archives and clean-up of hundreds 
of intermediary files. In a clinical environment the sys-
tem integration needed for the correct information flow 
often crosses multiple firewalls, domains and databases, 
and daily operation depends on support from a clini-
cal production grade IT-organisation. Pipeline manag-
ers like snakemake [21] or nextflow [22] are important 
to orchestrate jobs and processes in the pipelines which 
may consist of several hundred steps - each with distinct 
resource requirements and parallelisation potential. In 
this environment commercial hardware-accelerated solu-
tions that runs each sample serially can sometimes expe-
rience problems and tools that can run in parallel based 
on generic computers may be faster for the last finished 
sample on a high-performance computer cluster (HPC). 
More recent sequencing machines with build-in data 
processing hardware and closed end-to-end workflows 
may also bring limitations on how to reprocess samples 
and integrate historic data to advance diagnostics. Since 
the bottleneck in processing and variant calling from 
short-read sequencing often is the data-transfer times it 
is worthwhile to consider the design of the data storage 
system and the connection to the compute units, as well 
as cost-efficient storage tiers for active and archived data,  
respectively. Cloud solutions can be difficult to engineer 
for fast WGS, because the data is physically generated, 
and sometimes also physically stored, far from the com-
putation units. Taken together, the initial and very general 
tasks of demultiplexing pooling barcodes, read alignment 
and marking of duplicate reads can be performed close to 
- or inside - the sequencing machine and will result in con-
siderably less data transfer needs, but for more specialised 
tasks that are impacted by local optimisation and historic 
background data an HPC or cloud solution is needed.

Test, validation and accreditation is equally critical 
for bioinformatics production as it is for laboratory. For 
germline variant calling, initiatives like the Genome in a 
Bottle project have made it possible to benchmark and 

optimize tools, and there are even competitions from the 
American Food and Drug Administration (“FDA chal-
lenges”) in place to encourage such optimization. How-
ever, there is still no established reference for somatic 
variant calling. While the 1+ Million Genomes initia-
tive [23] and the Somatic Mutation Working Group of 
the Sequencing Quality Control Phase II Consortium 
[24] have begun to address this building a community 
standard truth set of somatic variants remains a challeng-
ing task. Instead, in-house data comprising hundreds of 
manually curated somatic mutations must be reanalysed 
each time a new modality is implemented. A similar need 
of standard exists for detection of copy number altera-
tions and inversions, and it is still a major challenge to 
call these in bioinformatic pipelines. Current tools are 
unable to detect all CNVs [25, 26], and because each 
algorithm has a specific recall bias so the only viable solu-
tion is to combine tools with different strategies. Since 
the output contains thousands of called variants, most of 
which could be correct but are not clinically relevant, it is 
also necessary to employ a large background panel from 
uniformly processed historic in-house samples to remove 
irrelevant calls. Correspondingly, somatic variant callers 
like Mutect2 (https://​gatk.​broad​insti​tute.​org/​hc/​en-​us/​
artic​les/​36003​75938​51-​Mutec​t2) and GATK-gCNV [27] 
also rely on pre-processed background cohorts in a panel 
of normals, and it is recommended to avoid using pub-
lic data because it may have a different noise modality. 
Most clinical bioinformatic units therefore relies on the 
access to a large harmonized in-house database of his-
toric patient data. As described below polygenic scores 
and somatic mutations signatures are also expected 
to become part of the WGS pipelines. Regardless of 
the computational method the calculations are highly 
dependent on the sequencing platform, library prepara-
tion, sequencing depth and variant calling and filtering 
pipeline. Consequently, computations of mutational sig-
natures [28] and polygenic scores [29] (see below) should 
be interpreted with great caution - and always - in rela-
tion to a scale of historic cases potentially blinded as 
quartiles if per-sample information cannot be displayed. 
In the very last step of the bioinformatics pipeline, it 
should also be recalled that most interpretation softwares 
do not require filtering before uploading and e.g., filtering 
on genome frequencies [30] should only be applied in the 
analysis software by the clinical interpreter as a conscious 
decision. Finally, as always - it is important to underscore 
that clinical data are sensitive and data privacy and safety 
should be highly prioritized in the WGS bioinformatics 
solutions.

https://gatk.broadinstitute.org/hc/en-us/articles/360037593851-Mutect2
https://gatk.broadinstitute.org/hc/en-us/articles/360037593851-Mutect2
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Data filtering and interpretation
Whole-genome sequencing (WGS) is widely employed 
to diagnose rare [31–35] and undiagnosed diseases [36] 
and identify actionable cancer drivers and signatures. 
The different clinical applications and the type of analyses 
that are implicated in the diagnostics are shown in Fig. 2. 
There are several reasons why whole-genome sequenc-
ing (WGS) is becoming the preferred method for genetic 
analysis over alternative methods such as panel and 
exome sequencing. Firstly, WGS detects more variants 
not only in the large noncoding parts of the genome but 
also in exons due to a superior mapping quality [31, 36, 
37]. Secondly, WGS captures copy number variations and 

structural rearrangements as well as mutation signatures 
and polygenic scores. Finally, WGS can be considered 
a lifelong investment that may be revisited for different 
clinical purposes and reanalysed when novel pathogenic 
variants and disease-causing genes emerge [38]. It has been  
estimated that about 250 new disease genes are discovered 
every year, and that up to 6000 Mendelian conditions 
remain to be discovered [39, 40]. As a direct illustration 
of the situation, it is worth mentioning that almost half of 
the variants identified in the recent UK and Ireland rare 
pediatric disease WGS study [37], where unknown by the 
time the study was initiated. The relation between human 
genetic variation and disease is summarised in Text Box 1.

Fig. 2  Clinical applications of WGS. Whole Genome Sequencing (WGS) finds its primary clinical applications in diagnosing rare diseases 
and pinpointing actionable somatic variants within tumors. Beyond these crucial roles, WGS serves to unveil polygenic risk scores (PRS) 
and pharmacogenetic profiles. The spectrum of rare diseases and somatic variants encompasses both small and structural variations, all discernible 
through WGS data analysis. WGS also enables the identification of trinucleotide repeat expansions prevalent in neuro-muscular and degenerative 
diseases. Additionally, it sheds light on polygenic and pharmacogenomic profiles, elucidated by the presence of widespread small common 
variants. In a comprehensive approach, WGS not only captures the intricate details of genetic makeup but also unveils tumor signatures 
by deciphering distinctive patterns within somatic variants. Human insert was created with BioRender.com 
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Text Box 1  Human genetic variation and disease

The human genome is composed of 3.2 billion base pairs of DNA, organized into 23 pairs of chromosomes [2–4]. In addition to the nuclear genome there 
is also a small amount of maternal DNA located in the mitochondria. Only about 1,5% of the genome sequences consists of protein coding exons [41]. The 
remaining 98% of the genome is made up of non-coding regions, which include regulatory elements, repetitive DNA sequences, and other functional elements 
[42]. While there is general consensus that we have about 20,000 protein-coding genes, the size of the proteome is still debated [41, 43]. Moreover, a numbers 
of non-coding RNAs such as micro RNAs and long non coding transcripts are also produced but their number and biological significance are with few excep-
tions uncertain [44].
Like any other species humans are under constant selection and genetic variation is an integral part of the evolution. We continuously acquire both positive 
adaptive germ cell mutations as well as neutral and disease causing variants [45]. Mutations result from radiation, environmental stress factors and deficient 
DNA repair [46] and they locate to all parts of the genome [47] albeit with varying frequency. On average a human genome accumulate about 75 mutations 
per generation [45]. Dominantly inherited variations leading to lactase persistence has for example allowed adult northern Europeans to digest milk [48] 
and the caspase-12 gene is polymorphic for a stop codon, that makes carriers more resistant to severe sepsis. We can also observe how the Black Death shaped 
genetic diversity around particular immune loci such as ERAP2 and CTLA4, highlighting how natural selection may have played a role in present-day susceptibil-
ity towards chronic inflammatory and autoimmune disease [49]. Finally, it is clear that genes encoding transcription factors and RNA binding proteins which are 
essential for fetal development are subject to a strong selective pressure as illustrated by their low or entirely absent occurrence of loss of function variants [30].
In genetic terms humans are 99.9% identical to each other. The remaining 0.1% of our genome corresponding to ~ 3.000.000 simple variants distinguish us 
from another. Among these ~ 45.000 (1.5%) are found in protein coding exons [2]. In addition, numerous structural variations, such as copy number variations 
(CNVs) and structural variations (SVs) may contribute to our genetic diversity [50, 51]. From a medical perspective, this genetic variation significantly influences 
individual susceptibility and disease development. The impact extends to pharmaceutical side effects and clinical outcomes, underscoring the integral role of genome 
sequencing in personalized medicine.
Both rare (< 1% minor allele frequency) and common variants (> 1% minor allele frequency) contribute to the risk of developing a disease, and they can some-
times interact with each other in complex ways. From a diagnostic point of view this is one of the major challenges for the current interpretation of WGS data. 
Common variants are typically associated with a small increase in disease risk, but because they are so common, they can have a significant impact on the pop-
ulation as a whole. At the individual level the presence of numerous common variants may generate a significant risk for a particular disease and their cumula-
tive effect is captured by the current polygenic risk scores (PRS). Rare disease associated variants, on the other hand, with few exceptions occur at a much 
lower frequency in the population, often far less than 1% of individuals. Most of the rare variants that are considered in diagnostics locates to the coding exons 
and alters or reduce the function of the encoded proteins. In families they exhibit a mendelian segregation pattern in the families, but they may also occur 
as de novo variants. During the past decade genome-wide association studies (GWAS) have associated thousands of common-variants to various diseases 
and traits, and in the same a series of large-scale sequencing studies have recently started to identify rare-variant associations [52–54]. A surprising finding 
has been that for a particular trait, common and rare variants appear to be mechanistically convergent [55]. The relative contribution of rare variants to the total 
genetic burden may be relatively small but rare variants may serve to improve the fundamental understanding of the disease pathogenesis and define possible 
targets of treatment.

Rare monogenic disorders
The output of a single WGS is about 5 million variants 
and the data interpretation begins by importing variants 
(.vcf files) into one of the many commercially available or 
in-house designed software tools that makes it possible 
to filter and annotate the variants. Filtrations, include 
exclusion of variants based on their quality, population 
frequency, functional impact and clinical relevance, in 
order to focus on variants with a putative causal role for 
the patient’s disease. A number of analytical approaches 
and filtering schemes have been put forward by various 
expert groups and initiatives and these may serve as a 
fine starting points for the interpretation units [56–60]. 
Figure  3 provides an example of a filtering scheme and 
how it affects the selection of variants.

In principle the analytic strategy may be genotype-
driven or symptom/disease (phenotype)-driven [56]. 
Genotype-driven analyses are focused on the identifi-
cation of pathogenic variants loss of function variants, 
whereas the symptom/disease driven analyses focus on 
variants that are compatible with the inheritance pat-
tern. There is no strong delineation between the two 
approaches and they are often combined. In cases where 
the diseases have a well-defined symptomatology an in-
silico gene panel of known disease related genes can 
moreover be applied at an early stage to focus the analy-
sis even further. In this way the exact analytical approach 

depends on the clinical presentation and whether the 
patient represents an isolated case or has a familial 
predisposition.

For children with healthy parents, a trio examination 
can be performed to identify pathogenic de novo het-
erozygous or compound heterozygous variants that are 
compatible with the clinical diagnosis [61]. The diagnos-
tic success is higher for trios than singletons and usu-
ally only 10–30 variants have to be scrutinized [37]. In 
cases with a familial predisposition, relevant affected and 
healthy family members can be included to subtract vari-
ants from healthy subjects and focus on shared variants 
in the probands and affected family members. Analysis of 
singletons is the most variable and challenging. Approxi-
mately 90% of variants are common variants with a fre-
quency greater than 2% and these are typically filtered 
out. Known pathogenic variants should obviously be 
retained for downstream analyses (Fig. 3C). The remain-
ing ~ 500,000 variants may be further filtered based on 
minor allele frequency and their location and significance 
focusing on nonsense, indels, proximal splice-site, and 
missense variants with a frequency below 1% or 2%. This 
normally reduces the number of variants to around 2500 
or fewer, especially, if combined with relevant gene pan-
els (Fig.  3A). About 40–80 variants normally represents 
pathogenic loss of function variants (LOF) that may be 
assessed directly (Fig.  3B). Factors such as ethnicity or 
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founder effects occasionally warrant changes to the gen-
eral filtering scheme and it is important to note that the 
expected frequency of a pathogenic variant in the popu-
lation depends on the penetrance of the variant or gene.

The ACMG/AMP classification criteria [59, 62] are 
widely used for prioritizing variants based on their patho-
genic significance. Based on characteristics such as allele 
frequency, case data, functional data, and data sources, 
variants are categorized into five classes: 1. benign, 2. 
likely benign, 3. variant of uncertain significance (VUS), 
4. likely pathogenic, and 5. pathogenic. The prioritization 
of VUS and putative pathogenic variants involves sev-
eral considerations. As shown in Fig. 3C, allele frequen-
cies are not very discriminative between VUS and benign 
variants and a number of other features needs to be con-
sidered in order to classify VUS. It is obviously impor-
tant if the variant has been observed in other patients 
and whether there is direct evidence linking the vari-
ant to the patient’s disease or symptoms. This informa-
tion can sometimes be obtained from databases such as 
The Human Gene Mutation Database (HGMD) or Clin-
Var (Table 1), or from the scientific literature. Moreover, 
the presence of homozygous individuals in population 
databases such as The Genome Aggregation Database 
(gnomAD) may support that the variant is benign. Addi-
tionally, search engines like PubMed, OMIM, and Find 
Zebra are also useful in establishing the significance of 
a variant or gene. Many commercial software tools even 
offer access to knowledge databases, providing more 
systematic reviews of the literature and databases that 
allow the interpreter to narrow down genes and variants 
associated with particular diseases or symptoms. Finally, 
predictive functional scores such as the REVEL score 
[63] (Fig.  3D) and the recent AlphaMissense prediction 

tool [64] (see below) are likely to play a larger role in the 
future. Note that the available database solutions are not 
standardized or accredited, and it is important that the 
interpreter document the reasons for the classification 
of a particular variant. If the analysis fails to identify an 
association between a gene and a disease, the molecular 
pathway in which the protein functions may eventually 
be considered. Pathway analysis is still in its early stages, 
and associations should be confirmed by functional 
analysis to support that a variant is in fact pathogenic. 
Finally, it is important to mention that VUS and even 
clear loss of function variants sometimes are located in 
genes of unknow significance (GUS). GUS are defined as 
genes without validated association with a given pheno-
type [59] and as a result of the uncertainty current guide-
lines recommend that any variant in GUS is reported 
as VUS. Rare, predicted damaging variants in GUS are 
obviously of great interest because they may eventually 
lead to the discovery of new disease gene. It is important 
that they are reported to relevant databases such as the 
Matchmaker Exchange that promote Genomic discovery 
through the exchange of phenotypic & genotypic pro-
files [65] (www.​match​maker​excha​nge.​org) or even for 
improved functional annotation in MaveDB [66].

From a clinical standpoint, VUS obviously represent 
a dilemma because their causative role in a particular 
disease is not fully established. Some argue that VUS 
should simply be eliminated from the analysis [67, 68] 
and await further evaluation, while others emphasize 
the risk of leaving patients without a diagnosis if a clini-
cally relevant VUS is disregarded. The number of VUS 
will likely decrease over time when databases accumulate 
more data and our understanding of disease pathogenesis 
improves. Currently, there are no definitive guidelines for 

Fig. 3  Variant analysis of patients with rare diseases. Panel A Overview of the filtering steps and the number of variants in rare disease patients 
referred for WGS analysis (means of 6 patients). The total number of variants in each patient is just above 5 MIO. The analysis begins by elimination 
of ~ 200.000 low quality variants. Subsequently, common variants with an allele frequency above 2% are excluded, since these are considered 
unlikely to explain the occurrence of a rare disease. Known pathogenic variants are retained. Since gnomAD may not represent all common 
variants, variants are moreover filtered against a local (Danish) reference genome and this further reduces the number of variants to about 200.000. 
Thereafter, the analysis is focused on coding and splice site variants and on average this reduces the number of variants to ~ 2400. Application 
of additional filters e.g., omitting ACMG/AMP benign variants or those with low REVEL scores further brings the number of variants down to ~ 1500. 
Panel B On average the patients exhibit 83 loss of function (LOF) variants and 748 missense variants. The remaining variants belonged to other 
categories such as variants in the UTRs and deep into the intron. Finally, on average 67 variants were previously registered in ClinVar or HGMD 
and information on these can be readily retrieved and used in the interpretation. The pie chart below shows the ACMG/AMP classification 
of the variants showing that only a minority are classified as pathogenic and likely pathogenic (< 2.5%). On average only a single pathogenic 
variant is identified. In many cases the variant represents a recessive heterozygote variant with no obvious relevance for the patient’s disease. 
Almost one third of the variants represents variants of unknown significance (VUS). Panels C and D shows the total cumulative distribution 
of gnomad allele frequencies and REVEL scores of ACMG/AMP scored variants (from Varseq) among 63 unrelated patients, respectively. Intergenic 
variants were filtered away and any variant which had conflicting classifications was removed. Moreover, variants with an allele frequency 
of more than 0.5 or for which an allele frequency could not be found was removed. The results illustrate that allele frequency is relatively effective 
in excluding benign variants, whereas likely benign and VUS are not effectively separated from the likely pathogenic and pathogenic variants 
by frequency filtering. The REVEL score combining pathogenicity predictions from 18 individual scores, in contrast, is clearly discriminative and high 
scores are enriched among pathogenic variants. About 25% of the VUS exhibit REVEL score above 0.5 that may warrant further analysis of these 
variants. The number and details of variants in the plots is summarized the attached Supplemental data

(See figure on next page.)

http://www.matchmakerexchange.org
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all clinical situations, so common sense and clinical expe-
rience are important. In many WGS centers, variants are 
discussed with the attending physician or in multidisci-
plinary teams to ascertain their clinical relevance. In gen-
eral, only pathogenic (class 5) and likely pathogenic (class 
4) variants are included in the final clinical report. Finally, 
it is convenient to include details about the sequencing 
and analysis method used and the composition of in sil-
ico gene panels in the report for future reference. Figure 4 
illustrates the general scheme of clinical WGS reporting.

Somatic variant analysis
WGS of tumour and germline DNA in combination with 
RNA sequencing-based expression analysis is widely 

used to identify actionable tumour drivers and host fac-
tors. WGS is the preferred method for tailored treatment 
because it potentially uncovers both the small somatic 
tumor variants, CNVs and facilitate the detection of char-
acteristic mutation signatures such as HRD and TMB. 
The complete map of somatic mutations and alterations 
in gene expression patterns provides integrated informa-
tion for selection of the optimal treatment.

Somatic variant calling requires a whole blood sample for 
germline variants and a tumour sample for somatic variants 
and transcriptome analysis. Somatic variants are identified 
by subtracting germline variants from the tumour sequence. 
It is not recommended to exchange the blood sample for 
a panel-of-normals germ-line variant set because of the 

Fig. 3  (See legend on previous page.)
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Table 1  Biomedical databases relevant for clinical WGS

Database/Resource Web address Content

ClinGen https://​clini​calge​nome.​org/ Clinical relevance of genes and variants

ClinVar www.​ncbi.​nlm.​nih.​gov/​clinv​ar/​intro/ Database of genomic variants with public sub-
missions of variant interpretations and disease 
relations.

Cosmic https://​cancer.​sanger.​ac.​uk/​cosmic Catalogue Of Somatic Mutations In Cancer

dbSNP https://​www.​ncbi.​nlm.​nih.​gov/​snp/ Contains human single nucleotide variations, 
microsatellites, and small-scale insertions 
and deletions

Ensembl https://​www.​ensem​bl.​org/​index.​html Genome browser for vertebrate genomes 
that supports research in comparative genomics, 
evolution, sequence variation and transcriptional 
regulation

Find Zebra https://​www.​findz​ebra.​com/ Tool for helping diagnosis of rare diseases. It uses 
freely available high quality curated information 
on rare diseases

Genomics England https://​www.​genom​icsen​gland.​co.​uk/ Comprehensive site describing the progress 
of the UK sequencing initiative. Site contains use-
full overviews over gene panels and diseases.

Geo Repository supporting MIAME-compliant data 
submissions. Array- and sequence-based data

gnomAD https://​gnomad.​broad​insti​tute.​org Exome and genome sequencing data with allele 
frequencies from a wide variety of large-scale 
sequencing projects

GTEX https://​gtexp​ortal.​org/​home/ Comprehensive public resource to study tissue-
specific gene expression and regulation. Samples 
were collected from 54 non-diseased tissue sites 
across nearly 1000 individuals, primarily for molec-
ular assays including WGS, WES, and RNA-Seq.

HGMD https://​www.​hgmd.​cf.​ac.​uk/​ac/​index.​php Collate all known (published) gene lesions respon-
sible for human inherited disease

Human Phenotype Ontology (HPO) https://​hpo.​jax.​org/​app/ Provides a standardized vocabulary of phenotypic 
abnormalities encountered in human disease

Matchmaker Exchange https://​www.​match​maker​excha​nge.​org Genomic discovery through the exchange of phe-
notypic & genotypic profiles

MaveDB https://​www.​mavedb.​org/ Collection, distribution, and analysis of variant 
effect maps

MedGen https://​www.​ncbi.​nlm.​nih.​gov/​medgen/ Organizes information related to human 
medical genetics, such as attributes of conditions 
with a genetic contribution

NCBI https://​www.​ncbi.​nlm.​nih.​gov/ The National Center for Biotechnology Informa-
tion advances science and health by providing 
access to biomedical and genomic information

OMIM https://​www.​omim.​org/ Compendium of human genes and genetic 
phenotypes

RefSeq https://​www.​ncbi.​nlm.​nih.​gov/​refseq/ A comprehensive, integrated, non-redundant, 
well-annotated set of reference sequences includ-
ing genomic, transcript, and protein.

The Cancer Genome Atlas Program (TCGA) https://​www.​cancer.​gov/​ccg/​resea​rch/​genome-​
seque​ncing/​tcga

The Cancer Genome Atlas (TCGA) has molecu-
larly characterized over 20,000 primary cancer 
and matched normal samples spanning 33 cancer 
types.

UCSC genome browser https://​genome.​ucsc.​edu Interactively visualize genomic data

Uniprot https://​www.​unipr​ot.​org/ Comprehensive and freely accessible resource 
of protein sequence and functional information.

https://clinicalgenome.org/
http://www.ncbi.nlm.nih.gov/clinvar/intro/
https://cancer.sanger.ac.uk/cosmic
https://www.ncbi.nlm.nih.gov/snp/
https://www.ensembl.org/index.html
https://www.findzebra.com/
https://www.genomicsengland.co.uk/
https://gnomad.broadinstitute.org
https://gtexportal.org/home/
https://www.hgmd.cf.ac.uk/ac/index.php
https://hpo.jax.org/app/
https://www.matchmakerexchange.org
https://www.mavedb.org/
https://www.ncbi.nlm.nih.gov/medgen/
https://www.ncbi.nlm.nih.gov/
https://www.omim.org/
https://www.ncbi.nlm.nih.gov/refseq/
https://www.cancer.gov/ccg/research/genome-sequencing/tcga
https://www.cancer.gov/ccg/research/genome-sequencing/tcga
https://genome.ucsc.edu
https://www.uniprot.org/
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higher noise level. Typically, tumours exhibit about 500.000 
somatic variants and as described for the germ line analy-
sis the variants undergo a series of filtering’s based on their 
frequency, call quality and read depth as well as their can-
cer relevance before interpretation. After filtration between 
20 and 1500 variants are normally eligible for further evalu-
ation. Based on their significance in cancer, prognosis, and/
or therapeutics somatic variants may be classified into 
four tiers. Tier I, represents variants with strong clinical 
significance, Tier II variants with potential clinical signifi-
cance and Tier III variants of unknown clinical significance 
whereas Tier IV is benign or likely benign variants [60]. 
Actionable somatic variants are subsequently be queried in 
relevant databases [69, 70]. Many laboratories also report 

the tumour mutation burden (TMB) score that is associ-
ated with immune cell infiltration and increased sensitivity  
to programmed cell death-1 (PD-1) or PD-1 ligand (PD-L1)  
blockade. Finally, a homologous recombination deficiency 
(HRD) signature linked to poly(ADP ribose) polymerase 
(PARP) inhibitor sensitivity [71–73] may also be generated 
from the WGS data.

Polygenic risk scores
Genome-wide association studies have revealed that com-
mon disorders such as type 2 diabetes, cardiovascular dis-
eases, and some cancers, are associated with combinations 
of common variants each providing a small increase in 
risk for the particular disease [74–78]. The polygenic risk 

Fig. 4  WGS from patient to clinical report. The journey of Whole Genome Sequencing (WGS) commences and concludes at the patient’s 
bedside. Upon the attending physician’s assessment, a WGS analysis is deemed potentially beneficial for offering crucial clinical insights, 
either through diagnosis or by presenting alternative treatment options. Following comprehensive patient briefing and obtaining consent, 
a sample of whole blood or tumor is dispatched to the specialized laboratory equipped for WGS. Within the genomic laboratory, the sequence data 
undergo meticulous analysis by the skilled staff. Putative disease-associated variants are subsequently deliberated with the attending physician 
and, if necessary, a multidisciplinary team comprising medical professionals from pertinent specialties, forming a Multidisciplinary Team (MDT). 
Specialties include pathology, clinical genetics, immunology, and more. This collaboration aims to establish a conclusive diagnosis and assess 
the clinical relevance of identified variants. The conclusive clinical report is then transmitted to the clinical department, where the attending 
physician shares the results with the patient. This communication includes a comprehensive discussion of the implications for the patient and their 
condition, along with recommended actions. In instances where the initial analysis fails to pinpoint disease-causing variants, the stored WGS 
data undergoes periodic re-analysis (inner grey arrow). This ongoing process ensures the continuous integration of new knowledge, potentially 
leading to a diagnosis without the need for additional hospitalization and sampling. Furthermore, throughout the treatment course, various 
clinically relevant information, such as pharmacogenetics, may be extracted to enhance the overall patient care experience. Inserts were created 
with BioRender.com 
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burden is combined into a polygenic risk score (PRS) that 
can support diagnosis, screening, and intervention at early 
stages of disease. The number of variants included in the 
PRS can range from a few (< 10) to thousands of variants, 
and while the discriminative ability of PRS in the general 
population has been debated, larger and more diverse 
studies, as well as refined computational strategies, have 
revitalized the clinical interest in PRS [29, 76–78]. Cheap 
chip-based assays are useful for PRS analyses, but WGS 
may become an appealing alternative because it will iden-
tify both common and rare variants that potentially may 
contribute to the genetic makeup of a diseases. Extraction 
of data for individual PRS can be integrated into the WGS 
pipeline and added automatically to the clinical report, 
providing a comprehensive genetic profile of the patient.

 In‑silico prediction and functional testing 
of variants
With the increasing diagnostic sequencing and identifica-
tion of new disease genes, the number of VUS that needs 
to be considered will increase [68]. Consequently, there 
is great focus on in-silico and in  vivo analyses to better 
understand the significance of these variants. Figure  5 

provides a schematic representation of the functional 
consequence of various types of mutations.

Predictive scores and protein structure
Missense variants are commonly assessed based on their 
frequency, conservation, and the location and type of amino 
acid substitution. Predictive scores that take this informa-
tion into account are being developed, and among the most 
widely used are Polyphen [79], SIFT [80], and CADD [81]. 
The REVEL score, in particular, combines scores from a 
wide range of tools and provides a relatively high enrich-
ment of pathogenic variants [63]. Precomputed REVEL 
scores are available for all possible human missense vari-
ants and can be integrated into the clinical analyses. With 
the rapid accumulation of AI-driven protein structures in 
the AlphaFold Protein Structure Database [82], many hoped 
that structural predictions could be used for assessment of 
Variants of Uncertain Significance (VUS). Although, initial 
attempts were not entirely successful [83, 84], the recent 
AlphaMissense (AM) algorithm, represents a major leap 
forward [64]. AM integrates information of evolutionary 
conservation and protein structure - both of which are inti-
mately linked to protein function - and classifies variants as 

Fig. 5  Genomic localization of variants and their functional consequence. 1. Germ-line variants located in the gene regulatory domains such 
as promoters or locus control regions will affect the level of gene transcription. In most instances variants in the promoters disrupt the binding 
of trans-acting factors thereby reducing expression of the gene. The composition of regulatory motifs is in many instances incompletely 
understood and it is in general difficult to predict the consequence of these variants. A few diseases exhibit unstable trinucleotide repeat 
sequences in the promoter, that when expanded is known to impair transcription. The functional significance of promoter variants is normally 
demonstrated by loss of expression (LOE) via RNA sequencing or measurement of the encoded protein. Repeat expansions may also be directly 
discerned from the WGS data 2. Variants located at the canonical splice donor (GT) or acceptor (AG) sites or at a known A – branch-site are 
in general pathogenic since these strongly conserved sequences are essential for splicing. Variants located deeper in the intron or in the connecting 
exons can also disrupt splicing due to disruption of enhancer or silencer motifs but the significance of these variants is more difficult to predict. 
The evaluation of these variants in general requires minigene analysis and/or RNA sequencing. 3. Coding nonsense or frameshift variants lead 
to premature translation termination and shortening of the encoded protein. In most cases this can lead to loss of function (LOF). Missense variants 
and small indels may disrupt protein function in a number of different ways such as reducing enzymatic activity, stability, localization or structure 
and macromolecular assembly. Consequently, the evaluation of these variants requires deep insight into the proteins function and in many 
instances various kinds of functional analysis is necessary in order to classify the variants as pathogenic. Since the functional significance 
of a particular variant may be difficult to predict - even for canonical splice mutations and LOF variants - it recommended that all classes of variants 
undergo evaluation according to ACMG/AMP criteria in order to determine pathogenicity
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likely -pathogenic or -benign. The precision of AM is thus 
far unmatched and the algoritm holds great potential to 
facilitate the classification of VUS.

mRNA expression and splicing
The processing of primary RNA transcripts from tran-
scription to translation and decay involves a series of 
well-characterized steps that can be affected by both 
coding and intronic variants (Fig.  5). In addition to the 
canonical GT-AG donor and acceptor sites, variants may 
involve exonic splice enhancers and/or intronic silencers 
or generate novel splice slice sites. The percentage of vari-
ants that affect pre-mRNA splicing varies among diseases 
ranging from 10 to 50% (reviewed in [85]) and studies 
have indicated that as many as 25% of exonic mutations 
may have an effect on splicing [86, 87]. RNA sequencing 
reveals the expression of individual alleles and the exonic 
composition of the transcripts and may uncover that cod-
ing variants are located in exons failing to be expressed 
in the relevant tissue. Calling of fusion genes from RNA-
seq data is also important. In particular for cancer diag-
nostics, because the fusion protein may be targeted by 
drugs. Given the relatively poor accuracy of fusion gene 
calling [88] it is recommended to use a number of fusion 
calling tools and rely on a weighted consensus score to 
prioritise the predictions. For selected clinically relevant 
fusions a whitelist may even be incorporated in the con-
sensus calling so low frequency targetable fusions are not 
overlooked. Finally, minigene analysis remains a para-
digm for the functional categorization of splice variations 
[89]. Several in silico prediction tools have also been 
developed to predict whether a particular variant is likely 
to affect splicing [90–92]. In silico prediction cannot 
stand alone but should prompt further analysis of RNA 
sequences or minigene splicing.

Protein function
The classification of a coding VUS should ultimately 
rely on the characterization of the protein’s func-
tion. Although, functional testing of an enzyme may be 
relatively straightforward, complex processes such as 
homologous recombination requires the assembly and 
concerted effort of several factors. As a result, there is no 
one-size-fits-all approach to functional testing and the 
analysis varies from disease to disease and from protein 
to protein. Variants implicated in metabolic diseases may 
e.g., be directly visualized by NMR, whereas disruption 
of protein assemblies can be examined through con-
ventional pull-down experiments. Dislocations may be 
visualized through the expression of the factors in suit-
able cell systems followed by microscopy. Some cell sys-
tems, such as induced pluripotent stem cells (iPSc), may 
even reconcile tissue-specific effects [93]. Many of the 

assays are difficult to perform in a routine clinical con-
text, and to solve this problem more systematic screen-
ings of variants are emerging. A recent example of this is 
the CRISPR-based saturation genome editing screening 
and classification of over 4000 BRCA1 variants [94, 95], 
which has facilitated diagnostics of woman with breast 
ovarian cancer significantly.

Results from the clinical application of WGS
For rare diseases pediatric- and clinical genetics depart-
ments are major requestors, but in principle any medical 
specialty, may encounter patients with diseases where 
conventional workup has failed to provide a diagnosis. 
Large series of patients with rare diseases [31, 32, 35, 
36, 96] have demonstrated an average diagnostic yield of 
~ 25% for probands. Somewhat over 10% of these diag-
noses were caused by variants in genomic regions that 
would not have been identified by other methods. More-
over, a few percent involved coding variants in regions of 
low coverage on exome sequencing [31]. The results are 
in line with data from screening of undiagnosed patients, 
where about half of the patients who receive a diagnosis 
from WGS have previously undergone exome sequencing 
[36]. The diagnostic yield varies across different patient 
groups, ranging from a few percent for respiratory and 
some hematological disorders to 40–50% for hearing and 
ophthalmologic disorders, intellectual, and neurodevel-
opmental disorders. For patients with heart disease or 
immune deficiency, the diagnostic yield is 20–30% [31]. 
In a recent study of rare paediatric disorders - a diagno-
sis was made in about 40% of the probands of whom 76% 
exhibited a pathogenic de novo variant [37]. The diagnos-
tic yield is highest among probands analysed in trios and 
for patients with more pronounced symptoms. On aver-
age 2.5 and 1 candidate variant were reported in single-
tons and probands analysed as part of trios, respectively. 
Children with intellectual disability, neurodevelopmental 
disorders, and complex syndromes usually require a com-
plex diagnostic workup, and since the WGS results are 
positive front-loading of the analysis during the diagnos-
tic work-up have been recommended [97–99]. Another 
important experience from the use of WGS is moreover 
that the analysis may uncover unique presentations of 
known diseases or a completely new disease. In this way 
WGS may have a significant influence on future disease 
classification and identification of novel syndromes.

For oncological patient’s comprehensive tumour char-
acterization has demonstrated the effectiveness of tumour 
sequencing in conjunction with transcriptome analysis 
to support targeted treatment. WGS uncovers actionable 
tumour variants in approximately two thirds of metastatic 
tumors but it should be underscored that there is large 
variation among tumor types [69, 100–103]. In addition, 
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germ line sequencing has revealed that a significant num-
ber of cancer patients carry predisposing mutations in 
tumour-suppressor genes [104–106]. The combination of 
tumour and germ line sequencing has significant poten-
tial for improving patient outcomes in cancer treatment, 
although, there is a strong need to improve the prioritiza-
tion and characterization of variants in order to increase 
the response rate of the new drugs.

Ethical concerns
Like any other medical tests, genome sequencing, raises 
ethical dilemmas for the society and patients. A num-
ber of the concerns such as privacy and confidentiality 
issues, consent, patients psychological stress, involve-
ment of biologic relatives, social stigmatization, insur-
ance and employment issues are shared with genetic 
testing in general [107–110]. Genome sequencing, how-
ever, also presents a few unique challenges due to the 
vast amount of information generated. We may not be 
in a position, where we can fully understand the implica-
tions of the data and there is moreover greater potential 
for incidental findings. This demonstrates the necessity of 
in-depth information to the patient prior to the analysis 
(Fig.  4). Moreover, the permanent and complete nature 
of the data makes it difficult to foresee future applica-
tions and dilemmas for the patients [111, 112] (CADTH 
report). Finally, privacy concerns and data-sharing issues 
are more challenging because data management often 
involves third parties outside the health-care systems. It 
is important that health-care providers take responsibil-
ity for safe data storage and prevention of unauthorized 
use of patient data. Since WGS technology is relatively 
new and is relevant in many medical specialties, we also 
want to highlight the importance of proper guidelines 
and education of the staff in general. MDs and nurses 
close to the patients should be comfortable with the tech-
nology in order to inform the patients.

The way forward
After the initial discovery and great expectations there is 
often a period of debate before the benefits of new tech-
nologies become evident. It is sometimes argued that 
WGS produce too much data that we are unable to inter-
pret. In some way this is correct, but in our opinion, it 
should be regarded as an opportunity rather than a prob-
lem and prompt us to increase our efforts to understand 
disease pathology and genetics even deeper. One of the 
most important objectives for the fields is to improve 
variant interpretation and annotation. This will require 
integration of clinical data, functional studies, popula-
tion databases, and extensive data sharing and develop-
ment of computational tools. WGS data should moreover 

be further integrated with transcriptomics, epigenomics, 
and proteomics, in order to provide a more comprehen-
sive understanding of disease mechanisms in Text box 1. 
By combining multiple layers of genomic information cli-
nicians will be able to identify functional variants, regu-
latory elements, and pathways associated with diseases, 
enabling more accurate diagnoses and targeted treat-
ments. Compared to a number of conventional methods 
WGS has also been considered expensive and to require 
huge storage capacity. The need for storage and high-per-
formance computing is a concern but should perhaps be 
perceived in a broader context and regarded as an invest-
ment in precision medicine. Moreover, the high-perfor-
mance computing infrastructure will facilitate a number 
of the associated research lines and stimulate the integra-
tion between clinical care and research. With respect to 
the clinical use of WGS, there has been a fast progress in 
the standards for data analysis due to the initiative of e.g., 
the Medical Genome Initiative [57] and ACMG/AMP 
as well as patient focused genome initiatives around 
the world. These efforts should be supported in order 
to advance diagnostics. Taken together, we are confi-
dent that WGS has the potential to make a difference for 
patients and we foresee that the clinical use will increase 
in the coming years.
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