
Domain/OS
Design Principles
0I4962-AOO

apollo

Domain/OS
Design Principles

Order No. 014962-AOO

Restricted Rights Notice

Use, duplication, or disclosure by the Government is subject to restrictions
as set forth in subparagraph (c) (1) (ii) of the Rights in Technical Data and
Computer Software clause at DFARS 52.227-7013.

Apollo Computer Inc.
330 Billerica Road

Chelmsford, MA 01824
(508) 256-6600

Notice: Notwithstanding any other lease or license agreement that may per­
tain to, or accompany the delivery of, this computer software, the rights of
the Government regarding its use, reproduction and disclosure are as set
forth in Section 52.227-19 of the FARS Computer Software - Restricted
Rights clause.

© 1989 Apollo Computer, Inc., Chelmsford, Massachusetts. Unpublished
-- all rights reserved under the Copyright Laws of the United States.

This notice shall be marked on any reproduction of these data, in whole or
in part.

Confidential and Proprietary. Copyright © 1989 Apollo Computer, Inc.,
Chelmsford, Massachusetts. Unpublished -- rights reserved under the
Copyright Laws of the United States. All Rights Reserved.

First Printing:
Latest Printing:

January, 1989
January, 1989

This document was produced using the Interleaf Technical Publishing Software (TPS)
and the InterCAP Illustrator I Technical Illustrating System, a product of InterCAP
Graphics Systems Corporation. Interleaf and TPS are trademarks of Interleaf, Inc.

Apollo and Domain are registered trademarks of Apollo Computer Inc.

ETHERNET is a registered trademark of Xerox Corporation.

Personal Computer AT and Personal Computer XT are registered trademarks of Inter­
national Business Machines Corporation.

UNIX is a registered trademark of AT&T in the USA and other countries.

3DGMR, Aegis, D3M, DGR, Domain/Access, Domain/Ada, Domain/Bridge, 00-
main/C, Domain/ComController, Domain/CommonLlSP, Domain/CORE, DomainlDe­
bug, Domain/DFL, Domain/Dialogue, Domain/DQC, DomainllX, Domain/Laser-26,
Domain/LISP, Domain/PAK, Domain/PCC, Domain/PCI, Domain/SNA, Domain X.25,
DPSS, DPSS/Mail, DSEE, FPX, GMR, GPR, GSR, NLS, Network Computing Kernel,
Network Computing System, Network License Server, Open Dialogue, Open Network
Toolkit, Open System Toolkit, Personal Supercomputer, Personal Super Workstation,
Personal Workstation, Series 3000, Series 4000, Series 10000, and VCD-8 are trade­
marks of Apollo Computer Inc.

Apollo Computer Inc. reserves the right to make changes in specifications and other
information contained in this publication without prior notice, and the reader should in
all cases consult Apollo Computer Inc. to determine whether any such changes have
been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF APOLLO COMPUTER
INC. HARDWARE PRODUCTS AND THE LICENSING OF APOLLO COMPUTER INC.
SOFTWARE PROGRAMS CONSIST SOLELY OF THOSE SET FORTH IN THE WRITTEN
CONTRACTS BETWEEN APOLLO COMPUTER INC. AND ITS CUSTOMERS. NO REP­
RESENTATION OR OTHER AFFIRMATION OF FACT CONTAINED IN THIS PUBLICA­
TION, INCLUDING BUT NOT LIMITED TO STATEMENTS REGARDING CAPACITY,
RESPONSE-TIME PERFORMANCE, SUITABILITY FOR USE OR PERFORMANCE OF
PRODUCTS DESCRIBED HEREIN SHALL BE DEEMED TO BE A WARRANTY BY
APOLLO COMPUTER INC. FOR ANY PURPOSE, OR GIVE RISE TO ANY LIABILITY BY
APOLLO COMPUTER INC. WHATSOEVER.

IN NO EVENT SHALL APOLLO COMPUTER INC. BE LIABLE FOR ANY INCIDENTAL,
INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING
BUT NOT LIMITED TO LOST PROFITS) ARISING OUT OF OR RELATING TO THIS
PUBLICATION OR THE INFORMATION CONTAINED IN IT, EVEN IF APOLLO COM­
PUTER INC. HAS BEEN ADVISED, KNEW OR SHOULD HAVE KNOWN OF THE POS­
SIBILITY OF SUCH DAMAGES.

THE SOFTWARE PROGRAMS DESCRIBED IN THIS DOCUMENT ARE CONFIDENTIAL
INFORMATION AND PROPRIETARY PRODUCTS OF APOLLO COMPUTER INC. OR
ITS LICENSORS.

Preface

Domain/OS Design Principles describes the architecture and design
of Domain/OS, Apollo's workstation operating system.

We've organized this manual as follows:

Part 1

Part 2

Introduces the ongms of Domain/OS
and discusses the fundamental design
principles we used to develop the sys­
tem.

Contains technical papers by Apollo en­
gineers that describe in greater detail
some of these design principles.

References for the material in each chapter are at the end of that
chapter.

Preface iii

Documentation Conventions

Unless otherwise noted in the text, this manual uses the following
symbolic conventions.

literal values

user-supplied values

sample user input

output

}

< >

CTRLI

iv Preface

Bold words or characters in formats and
command descriptions represent com­
mands or keywords that you must use
literally. Pathnames are also in bold.
Bold words in text indicate the first use
of a new term.

Italic words or characters in formats
and command descriptions represent
values that you must supply.

In examples, information that the user
enters appears in bold.

Information that the system displays ap­
pears in this typeface.

Square brackets enclose optional items
in formats and command descriptions.
In sample Pascal statements, square
brackets assume their Pascal meanings.

Braces enclose a list from which you
must choose an item in formats and
command descriptions. In sample Pas­
cal statements, braces assume their Pas­
cal meanings.

A vertical bar separates items in a list of
choices.

Angle brackets enclose the name of a
key on the keyboard.

The notation CTRLI followed by the
name of a key indicates a control char­
acter sequence. Hold down <CTRL>
while you press the key.

----88----

Horizontal ellipsis points indicate that
you can repeat the preceding item one
or more times.

Vertical ellipsis points mean that irrele­
vant parts of a figure or example have
been omitted.

This symbol indicates the end of a
chapter.

Preface v

Contents

Part 1. Domain/OS

Chapter 1 Overview

Architecture of a Workstation Operating System 1-2
Domain/OS Overview " 1-3
The Role of the UNIX Operating System. 1 5

UNIX Compatibility - Implications. 1-5
The UNIX Philosophy 1-6
Beyond UNIX Compatibility. 1-7

References 1-9

Chapter 2 The Origins of Domain/OS

Object Orientation. 2-2
System Functionality in User Space. 2-3
Dynamic Loading. Linking. and Sharing of

System Libraries. 2-5
Position-Independent Code.. 2-5
Known Global Table.. 2-6
Virtual Address Space Layout. 2-6

ContentS vii

Global Libraries 2-6
Private Libraries 2-7

Support for Large Virtual Address Space Processes .. 2-8
More Efficient Use of Physical Memory 2-9
Single-Level Store .. 2-10

Areas , 2-11
Virtual Memory Management. 2-12

Mapping - the Single-Level Store 2-12
Demand Paging .. 2-12

Scaling to Many Machines and/or Users. 2-13
Simple Administration in Large Networks. 2-13
Shared Data 2-15

Extensibility by Users 2-16
Open System Toolkit 2-16

Objects 2-17
Type Managers and Traits 2-18
How Type Managers Are Loaded 2-19

Extended Naming. 2-19
Network Computing System 2-20

Support for Multiple Operating System
Environments 2-21

Support for Multiple Processors 2-23
Conclusions 2-24
References 2-25

Part 2. Technical Papers

Chapter 3
Extensions to UNIX Signal Functionality

for Modern Architectures 3-1

Chapter 4
Shared Program Libraries - The Domain/OS

Library Model. .. 4-1

viii Contents

Chapter 5
The Domain/OS Input/Output System 5-1

Chapter 6
Extending the UNIX Protection Model

with Access Control Lists 6-1

Chapter 7
A User Account Registration System for a

Large (Heterogeneous) UNIX Network 7-1

Chapter 8
The Network Computing Architecture and

System: An Environment for
Developing Distributed Applications. .. 8-1

Chapter 9
An Extensible 110 System 9-1

------ 88 ---

Contents ix

Chapter 1

The Origins of Domain/OS

Domain/OS. which first shipped to customers in July 1988, is
Apollo's workstation operating system software. It comprises a com­
mon kernel and three environments. BSD. SysV. and AegisTM.
BSD and SysV provide the two major UNIX"' operating environ­
ments and Aegis supplies Apollo's original operating environment.

This chapter explores the context from which Domain/OS arose. It
includes a brief overview of operating system architecture in general
and of Domain/OS in particular. a discussion of some of the special
operating system requirements of the workstation market. and some
remarks about the role that the UNIX system played in the devel­
opment of Domain/OS.

"'UNIX is a registered trademark of AT&T in the USA and other
countries.

Origins of Domain/OS 1-1

Architecture of a Workstation Operating System

The purpose of any computer's operating system is twofold. First, it
implements an abstract machine that is far more convenient to use
than raw hardware. Second, it allocates, controls access to, and
otherwise manages such physical computing resources as proces­
sors, memory, and peripherals.

For its users, however, an operating system should allow the most
effective and efficient use possible of all the resources in the com­
puting environment and give each of many users the illusion of ex­
clusive use of the machine. For workstation users, these resources
include CPU power, memory, network bandwidth, and disk space.

However, the most important resource is clearly the users' time.
For software developers, in particular, the operating system has to
minimize development time, provide tools and mechanisms to fa­
cilitate innovation and realize, as much as possible, the maximum
power of the hardware. It must also leverage developers' efforts by
ensuring portability for their software.

New technology has changed the character of operating systems, as
well. In recent years, we have seen the advent of inexpensive, high­
speed local area networks, high-resolution bitmap displays, multi­
MIP CPUs, multiprocessor hardware, and less expensive semicon­
ductor memory and high-capacity disks. All of these have put new
demands on traditional operating systems.

1-2 Origins of Domain/OS

Domain/OS Overview

Apollo's Domain/OSisa high,....performance UNIX workstation op­
eratingsystem that is built on object-oriented principles. It effec­
tively exploits the new hardware technology of the last few years,
both in exclusively Apollo environments and in heterogeneous envi­
ronments. The issue of heterogeneity has become increasingly im­
portant, as fewer and fewer customers are willing, or even able, to
restrict their sites to using computing equipment from a single
manufacturer.

Domain/OS consists of a common kernel with three operating envi­
ronments. The Aegis environment provides all the functionality of
the Aegis operating system, Apollo's original operating environ­
ment, and the BSD and SysV environments provide users with en­
hanced Berkeley Software Distribution 4~3 and AT&T System V
Release 3 UNIX environments, respectively. *

Each of these environments can run without relying on the others.
The environments can also run concurrently , so that any Domain/
OS site can use two or three environments and enjoy a great deal of
flexibility. By providing separate implementations of the two major
UNIX development threads, rather than one "amalgamated" UNIX
system, Domain/OS can track both standards as they evolve. The
availability of the two UNIX environments also fulfills our custom­
ers' needs for software portability.

Domain/OS uses Apollo's Open System Toolkit'M (OST) to enable
customers to extend the power of the operating system and to sup­
port true distributed computing in multi-vendor environments with
the Network Computing System.

The Open System Toolkit provides tools that allows operating sys­
tems programmers to create new types of lIO targets (that is, de­
vices) without modifying the operating system's source code. The
Open System Toolkit also includes facilities to add new object types
to the system.

* SysV is compatible with the System V Release 3 Interface Defini­
tion (SVID) for Base OS, Base Libraries, and Library Extensions.

Origins of Domain/OS 1-3

In traditional UNIX systems, when device drivers are written for
new devices, a systems programmer must modify and rebuild the
operating system source code to install the new driver. The OST
approach makes it far simpler and cleaner to add device drivers to
the operating system. Other concepts associated with the OST (ob­
ject types, type managers, extended naming) make it significantly
easier to customize the Domain/OS system to answer a particular
site's needs. Chapter 2 discusses these concepts.

One of Domain/OS's major strengths is the distributed file system,
which provides transparent access to data anywhere in the network.
In addition to having distributed data, however, Domain/OS offers
true distributed computing in the form of the Network Computing
Architecture. In addition to providing ways to make optimal use of
computing resources, the Network Computing Architecture pro­
vides ways to take advantage of parallel processing and specialized
hardware as well.

The Network Computing System 1M is a portable implementation of
the Network Computing Architecture that runs on both UNIX sys­
tems and other systems. In addition to being object-oriented, the
Network Computing System supplies a transport-independent re­
mote procedure call facility. The system is built on a concurrent
programming support package that allows multiple execution
threads in a single address space and also contains a replicated
global location database for objects.

1-4 Origins of Domain/OS

The Role of the UNIX Operating System

Traditionally, each computer manufacturer designed its own oper­
ating system to meet the needs of both its own customers and its
internal software developers. Recently, however, it has become
clear that one of the best ways to maximize the productivity of soft­
ware developers and to provide the customer some measure of ven­
dor independence is to make the operating system's services avail­
able through interfaces that are standard across many manufactur­
ers' equipment. In the workstation world (as in the minicomputer,
and, increasingly, the mainframe worlds), the standard is defined
by the UNIX operating system.

More than a standard set of interfaces, however, the UNIX system
is a framework into which new interfaces will be incorporated, as
well as a context and a common language for discussing new operat­
ing system ideas. The style already established by existing UNIX
features will, to a large degree, determine the shape and feel of
future operating system functionality.

Domain/OS provides, in addition to the UNIX interfaces, compat­
ible extensions. One example of these extensions is the Domain/OS
protection system, which provides all the functionality of the tradi­
tional UNIX modes, but extends them by providing more flexible
and more finely grained protection levels. These extensions are en­
tirely optional and do not interfere if users wish to run a "pure"
UNIX environment on Apollo hardware.

UNIX Compatibility - Implications

It is difficult to overestimate the effects of having the UNIX operat­
ing system as a standard. Many types of application software are
being developed exclusively. or at the very least, first. for the UNIX
system because of the tremendous leverage the system provides in
making a developer's software available to a wide audience. Many
new standards (in windowing systems, for example) are being devel­
oped for UNIX systems, and are therefore coming into widespread
use much more rapidly than they would otherwise.

But the notion of UNIX compatibility extends beyond the program­
ming interfaces to the areas of performance and user environment.
Developers porting UNIX code expect. the relative performance of

Origins oj Domain/OS 1-5

various system facilities to be more or less the same from one UNIX
system to another.

Furthermore, UNIX systems provide a user environment that is
fairly consistent from machine to machine. As a result, program­
mers, system administrators, and other end users all find that many
of their skills and work habits carryover from one UNIX system to
another. This allows organizations that run or develop software to
make productive use of newly hired employees more quickly.

So the first requirement for a competitive operating system in the
workstation market is UNIX compatibility in all aspects. In its
UNIX environments, Domain/OS provides both the interfaces and
the feel of a UNIX system. In addition, Apollo continues to use the
UNIX software as a base for implementing compatible extensions,
and proposing those extensions within such standards bodies as the
IEEE POSIX group, the Open Software Foundation (OSF), and in
the UNIX community at large.

The UNIX Philosophy

The original developers of the UNIX system were programmers who
had pragmatic ideas about how an operating system should be struc­
tured and used. These ideas have seeped into the software develop­
ment and engineering culture, and are known collectively and in­
formally as the UNIX philosophy. The major points of this philoso­
phy are generally agreed to be:

• Provide just enough mechanism to get the job done, and
no more.

• Let each command do one thing well.

• Don't try to do the user's job. Provide tools as building
blocks, which can be arranged as necessary to perform a
task.

• The output of one command should be usable as the input
of another command.

• Files are unstructured byte streams. Applications may im­
pose any internal structure, but to the system, a file is a
file.

1-6 Origins of Domain/OS

Some aspects of this philosophy are no longer as relevant as they
once were. As UNIX systems have become platforms for applica­
tions more than just a means to support programming and word
processing, we have seen the emergence of applications programs
that approach (or even exceed) the operating system itself in size
and complexity. Areas such as computer-aided drafting (CAD) and
desktop publishing create self-contained; highly interactive, graph­
ics-intensive environments in which the end user is largely uncon­
cerned with the nature of the underlying operating system.

However, one aspect of the UNIX philosophy, often implied but
seldom stated explicitly. is still extremely relevant. It has to do with
finding the proper relationship between generality and perform­
ance. There are two parts to this:

• Find the right balance between the current and future
needs of the customer.

• Provide what you can implement efficiently today. Don't
offer functionality that demands more performance than
the current technology can offer •. because the functionality
won't get used.

However this point is stated, it is clear that trying to achieve these
goals is the essence of skillful engineering. It is also clear that the
technology available today makes it practical (and even necessary)
to offer features that might have been too costly just a few years
ago.

While important, UNIX compatibility is by no means sufficient to
solve all of today's operating system problems, and the desire to
maintain compatibility with the UNIX system should not obviate the
possibility of improving and extending it.

Beyond UNIX Compatibility

Current UNIX implementations fail in several ways to provide
maximum value to users. This is not surprising. Although the UNIX
kernel has evolved considerably since its original implementation in
the early 1970s, its basic characteristics have not changed in .any
fundamental way.

At the time of its inception, most of the machines available were
minicomputers with low-powered (by today's standards) CPUs,

Origins of Domain/OS 1-7

limited physical memory, small disks, and little or no networking
capability. The expense of the hardware dictated that these ma­
chines be timeshared.

As time has passed, much new functionality has been added to the
UNIX system, but most ont has been added to the kernel, making
it quite bloated. As a result, the kernel has lost much of its original
elegance and simplicity, and is no longer the best match for current
technology.

Other developers have begun to recognize the limitations of the
traditional UNIX kernel [1], and are exploring new ways of struc­
turing the operating system. They hope to demonstrate that an op­
erating system can realize the benefits of the UNIX system without
being subject to the constraints of a monolithic kernel.

It is possible to enumerate a number of principles and general prop­
erties that such a restructured UNIX system should possess, and
Domain/OS already embraces many of these principles. In the next
chapter, we discuss in more detail the design principles underlying
the Domain/OS operating system.

1-8 Origins of Domain/OS

References

[1] R. Rashid. Threads of a New System, UNIX Review, 4,
No.8, pp. 37-49. August, 1986.

Origins of Domain/OS J-9

Chapter 2

Domain/OS Design Principles

Domain/OS is a complex operating system. It employs several inter­
esting design principles to manage that complexity and to avoid
some of the pitfalls of traditional. monolithic UNIX kernels.
Among these principles are:

• Object orientation

• A small kernel

• System functionality in user space

• Dynamic loading. linking. and sharing of system libraries

The goals of Domain/OS's design include:

• Support for very large virtual address space processes

• More efficient use of physical memory

• Single-level store and transparent object location

• Network-wide access to file system objects through virtual
memory management

• Scaling to many machines and/or users

Domain/OS Design Principles 2-1

• Extensibility by users

• Support for multiple operating system environments and
multiple processors

The sections that follow expand· on these fundamental Domain/OS
design principles and goals.

Object Orientation

Briefly, under the object-oriented model, the world consists of a
collection of opaque abstract objects. The behavior of these ob­
jects, but not their internal implementation, can be discerned by
other objects. The state of an object can be altered or observed
only through the interfaces (operations) that the object exports to
the rest of the system.

Because the behavior of one object does not depend on the imple­
mentation of another object, any object's internal implementation
is free to change, as long as it still presents the same behavior to the
rest of the world.

Object-orientation in Domain/OS is largely by convention, since
the language used to implement the kernel does not enforce infor­
mation-hiding and data abstraction. This allows Domain/OS to vio­
late the rules of the object-oriented model, when necessary, to
avoid the expense of excess layering that is inherent in a pure ob­
ject model.

2-2 Domain/OS Design Principles

System Functionality in User Space

A general goal of the Domain/OS design was to minimize the size of
the kernel by implementing system functionality in user space,
where doing so would not compromise security or performance.
This has several benefits:

• It makes it easier to prototype, implement, and debug
these facilities, because all of the interfaces and tools avail­
able to any application program are accessible in user
space.

• In some cases, better performance results because traps to
the kernel can be avoided.

• It makes it possible to avoid paying the cost of functions
that aren't necessary. User space libraries and servers that
implement optional functionality need not be installed.

• It allows users to substitute for or extend system function­
ality without modifying the kernel.

Domain/OS makes user-space implementation of system function­
ality practical by providing some of the same mechanisms in user
space that traditional kernels (including the UNIX kernel) depend
on internally.

The most important of these are a shared memory facility for
cheap, high-bandwidth communication among processes and an in~
expensive mutual exclusion mechanism, based on eventcounts. Ad­
ditionally, a user-space cleanup mechanism is needed to make sure
that user-space global state (see below) is properly cleaned up
when a process dies, as well as an inexpensive way to defer asyn­
chronous signals while critical sections of user-space code are being
executed [5].

Most UNIX implementations do not have these facilities available
outside the kernel. It is critical that such mechanisms be cheap, so
that moving functionality out of the kernel does not incur a per­
formance penalty. For example, the mutual exclusion call for enter­
ing a critical section only executes six machine instructions (and no
system calls) in the case where there is no contention for the mutual
exclusion lock.

Domain/OS Design Principles 2-3

A typical example of these facilities in Domain/OS is Apollo's Tep/
IP implementation, which is implemented entirely in user space (us­
ing kernel network device drivers), and achieves a highly competi­
tive performance.

In addition to these facilities, Domain/OS includes the GPIO sub­
system. which allows device drivers to be written, debugged, and
installed entirely in user space. This makes the work of adding a
new device driver to the system much simpler than in traditional
architectures where a new device driver must be bound into the
kernel.

Perhaps what is most important about these design principles is not
that they have been used internally to structure the operating sys­
tem, but that they also form the basis for allowing users to extend
the functionality of the system in ways that Apollo may not have
anticipated.

In particular, the object-oriented approach makes it possible for
users to customize or extend the system without knowledge of how
other portions of the system are implemented. This user exten­
sibility is discussed in a later section.

2-4 Domain/OS Design Principles

Dynamic .Loading, Linking, and Sharing of System
Libraries

UNIX applications can use services that are provided by the kernel
as well as services provided by libraries. The kernel services are
obtained by trapping into the kernel from user mode. The library
services are obtained by binding the necessary routines into the
executable image of the library. Thus, binding to kernel services is
effectively done at system boot time, while binding to library serv­
ices is done at program bind time. This scheme has three obvious
disadvantages:

• It wastes disk space, since copies of the library routines are
duplicated in every command.

• It increases the total working set of processes, since each
process is accessing its own copy of the routines.

• It creates a serious maintenance problem for third-party
software vendors: if a manufacturer fixes bugs or enhances
performance in the library routines, the software vendor's
customers will not see those changes until the vendor re­
builds and redistributes its applications to its customers.

These problems are solved in Domain/OS by the use of shared li­
braries. There are two kinds of shared libraries: global and private.
The implementation of shared libraries relies on three basic mecha­
nisms present in Domain/OS: position-independent code, the
known global table, and global user address space.

Position-Independent Code

The Domain/OS compilers can generate position-independent code
(PIC). This has the effect of inserting an extra level of indirection
for each external procedure and each reference to global data. For
a procedure, this extra code is called a transfer vector, and is lo­
cated in the read/write data section of a module. The transfer vec­
tor simply jumps to the actual procedure entry point.

This allows the procedure text of a shared library to be loaded any­
where in an address space without relocation. The procedure text

Domain/OS Design Principles 2-5

can therefore be read-only, and thus be shared by all the processes
that use the library. All load-time relocation takes place in the data
area, which already must be write able anyway.

Known Global Table

The Known Global Table keeps track of all the symbols exported
by the libraries currently installed. It is consulted whenever a pro­
gram that has unresolved external references is loaded. Any such
references that are found are filled in with the symbol's value from
the Known Global Table.

Virtual Address Space Layout

Domain/OS supports the concept of global user address space. Ac­
tually, it divides the address space into four partitions: global super­
visor, global user, private supervisor, and private user. Global ad­
dress space is shared among all processes, with global supervisor
space being the portion where the kernel text and data are mapped.
It is readable and writeable only when the system is executing ker­
nel code as a result of a system call, an interrupt, or a context
switch to a kernel-only process. Global user space, on the other
hand, is accessible to any user space code, just like the more tradi­
tional private user portion of the address space.

Global Libraries

Global shared libraries are installed into global user space once, at
boot time. Each node has a system configuration file that specifies
which libraries are to be treated as global and which as private. All
libraries specified in this file as either or global or private (the exact
terms are global and shared) have their entry points stored in the
global Known Global Table.

When a program that makes calls to global library entry points is
loaded, that program's transfer vectors are filled in with the values
found in the Known Global Table, and the program is then ready to
run.

2-6 Domain/OS Design Principles

Many functions traditionally found in the kernel are implemented
in the global libraries. For example, the entire device-independent
110 layer (Le., open. close, read, write) is in a user-space global
library.

Private Libraries

In addition to being marked as shared in the system configuration
file, private libraries can be marked as either static or dynamic.
Marking a library static means that the library is loaded when a
program containing a reference to the library is loaded; marking it
dynamic means that the library is loaded when a program actually
executes a call on the library.

The configuration file also allows you to designate libraries as op­
tional; no error is reported if the library is not found. A default set
of libraries is always loaded if the configuration file is not present.

Domain/OS Design PrincipIes 2-7

Support for Large Virtual Address Space Processes

Traditionally. UNIX systems require an area of the disk or disks to
be preallocated as swap space. This space can be used only for
swapping or paging, and cannot hold regular file system objects.
The sume of the sizes of the virtual address spaces of all current
processes must not exceed the amount of swap space. Thus, for
example. if 8 megabytes of swap space are allocated, no process (or
combination of active processes) can use more than 8 megabytes of
virtual memory.

If the pre configured swap space is too small, the system must be
reconfigured. That process generally requires dumping all the file
system objects on that physical volume to .tape, rebuilding all the
file systems. and then restoring the data from tape.

With the advent of processors that support huge virtual address
spaces and applications that use them, these limitations are clearly
no longer practical. They impose arbitrary limits on process virtual
address space size and are an inefficient use of disk space.

Domain/OS allocates backing store for disk space dynamically, as it
is requested by a process. Disk space does not have to be desig~
nated in advance as file space or swap space. Thus, the size of a
process's address space is limited only by what the processor can
support and by the total amount of free space on the logical vol­
ume. This means, for example, that when a process performs an
sbrkO operation to increase the size of its data area, it can obtain
the space needed to back up the newly added pages of address
space from anywhere on the file system volume.

2-8 Domain/OS Design Principles

More Efficient Use of Physical Memory

Another problem related to the size of a process's virtual address
space size is that current UNIX kernels generally require that all the
page tables for a process reside in physical memory while the proc­
ess is active. This represents an inefficient use of physical memory,
and adds another unnecessary constraint on process virtual address
space size.

Domain/OS can swap the page tables for an active process out to
the disk. This means that there can be a fixed upper limit on the
amount of physical memory devoted to page tables, with no effect
on the amount of virtual address space a process can use. If all of
the currently active processes have relatively modest combined vir­
tual memory requirements, then all of their page tables can fit in
memory. In that case, no swapping takes place, and there is no
impact on performance.

Domain/OS Design Principles 2-9

Single-Level Store

Some operating systems divide storage into several levels. A ma­
chine's main memory acts as the primary storage level, while the
disk acts as secondary storage. In this scheme, programs have direct
access only to the primary storage level; they must explicitly copy
data from secondary to primary storage before they can operate on
it.

Domain/OS uses a single-level storage mechanism, whereby a pro­
gram gains access to an object by mapping object pages directly into
the process's address space. With the single-level store, all objects
in the network are accessed in the same way, regardless of whether
they reside on the local disk or on another disk in the network.
Users can share the same program and/or data file, and can exe­
cute a program without regard for the location of files that it uses.

Both disk and network I/O are implemented by way of demand
paging. The file 110 manager maps file pages into the virtual mem­
ory of a process. When a program attempts a read or write opera­
tion, the file 110 manager starts at the current seek pointer location
and copies the pertinent data from the place in the process's ad­
dress space where the file has been mapped to the user's program
buffer. (A program can also be set to perform 110 in a mode that
eliminates the data-copying step.) If the data requested is not in
real memory, a page fault occurs.

Thus, there is a direct mapping between object pages (regardless of
where they reside on the network) and process virtual address
space. With this direct mapping feature, processes can access ob­
jects using programming language variables, arrays, strings, and
other constructs. In addition, once the object is mapped into a
process's virtual address space, the system does not demand-page
any data until the process actually refers to it. Thus, processes can
map the objects without excessive system overhead.

Domain/OS makes more efficient use of physical memory by allow­
ing all of it to be available as a cache over the file system. The
system uses the same mapping and demand paging mechanism for
program execution, as well. Because the demand paging mechanism
operates transparently over the network, you can execute programs

2-10 Domain/OS Design Principles

Areas

on nodes with or without disks, without additional special mecha­
nism.

Of course, Domain/OS provides the standard UNIX 110 interfaces:
open, close, read, write, and seek. In addition, Domain/OS allows
direct access to the mapped file interface for applications that re­
quire the maximum possible I/O throughput.

One exception to the single-level store mechanism lets Domain/OS
create processes faster and less expensively. Instead of using a file
system object to back up portions of virtual address space, we use a
pseudo-object called an area. The area mechanism is based on the
System V regions model, but since that term has another meaning
specific to Domain/OS, we refer to this pseudo-object as an area.

An area is a set of contiguous segments in a process's virtual ad­
dress space. The process itself creates and maps the area. Other
processes can map any portion of an area into their own address
spaces.

An area has a unique identifier (UID) by which it can be mapped,
just as an object can. It appears to the rest of the operating system
as a file system object, but without the overhead of creating, delet­
ing, and manipulating.

Areas let you avoid manipulating objects directly. Since all alloca­
tion, deallocation, and growth operations are performed in mem­
ory, there are no file maps to adjust and thus no disk buffering or
other disk operations to perform.

Domain/OS Design Principles 2-11

Virtual Memory Management

The Domain/OS virtual memory management scheme provides net­
work-wide access to objects with two related operations: mapping
and demand paging.

Mapping - the Single~Level Store

We discussed mapping in a previous section on the single-level
store. Briefly, the single-level store allows a program to gain access
to a file system object by mapping the object's pages into the proc­
ess's address space. Once the object is mapped in, individual seg­
ments of it are moved in and out of the address space by a mecha­
nism called demand paging.

Demand Paging

In demand paging, the system dynamically transfers pages of an
object in and out of physical memory, both locally and over the
network. The object may reside on the local disk or on a remote
node's disk. Each node has a remote paging server process to han­
dle remote requests to read and/or write pages of objects that reside
on that node. When another node references an object belonging
to that node. the paging server dynamically transfers the data to the
requesting node.

The paging system on a node caches copies of pages that have been
transferred to that node. so that any subsequent reference to the
same page is very fast. A concurrency cheCking mechanism ensures
that the cached pages are valid upon subsequent reference.

In Domain/OS, both disk and network I/O are implemented by way
of demand paging. The file I/O manager maps file pages into the
virtual memory of a process. When a program attempts a read or
write operation, the file I/O manager copies the pertinent data,
starting at the current seek pointer location, from the place in the
process's address space where the file has been mapped, to the
user's program buffer. If the data requested is not in real memory,
a page fault occurs.

2-12 Domain/OS Design Principles

Scaling to Many Machines and/or Users

Unlike traditional UNIX implementations, Domain/OS anticipated
the availability of high-speed local area networks from the time of
its initial design. We felt that to truly exploit the current and future
capabilities of such networks, the distributed file system supported
by the system would have to adhere to two principles:

• The design must scale well to very large networks, consist­
ing of thousands of nodes.

• Sharing of data without prior arrangement must be the de­
fault.

Simple Administration in Large Networks

The first principle implies that administering the distributed file sys­
tem would have to be extremely simple. Adding a new node or a
new user to the network must be as simple as adding a new user on
a timesharing system. The ability to have new nodes join the distrib­
uted file system must not be limited by fixed size mount tables, nor
must other machines have to perform any explicit action to access a
new node.

In Domain/OS, when a new node joins the network, it issues only
one command to make its presence known to a network-wide nam­
ing server. Thereafter, other nodes automatically learn the address
of the new node when they attempt to refer to it by name.

One of the most important benefits of these design decisions is that
diskless nodes can be used and administered very simply and JIex­
ibly. Any workstation can boot diskless off any disked workstation
in the network at any time, without prior arrangement.

Nor does a diskless workstation require its own file system partition
on its partner. Instead, it shares the root volume of the partner.
Like every other node, it sees the same view of the name space and
has full access to the file system, no matter who its partner is.

Domain/OS Design Principles 2-13

One other point concerning protection is worth noting. In support­
ing very large user communities. one soon finds that the simple
owner-group-world protection scheme~offered by the UNIX system
is not always flexible enough to carefully control the sharing of
data. One often wants to grant or remove rights for certain persons
or groups of people. Or one wants to have the protection placed on
a file be determined not by who is creating the file. but by what
directory it is being created in.

To address this problem. Domain/OS optionally allows the exten­
sion of the UNIX protection mechanism with Access Control Lists
[3]. ACLs are ordered lists of subjects (persons. groups. and or­
ganizations) and the rights granted to those subjects. Protection in­
heritance for newly created files can be specified on a per-directory
basis. and can be set to be "from process" (traditional UNIX se­
mantics) or "from directory." where each directory has associated
with it the initial protections to be applied to new files.

If a user or system administrator makes no special arrangements.
the default is for the system to provide nothing more than standard
UNIX protection semantics. If the extra flexibility of ACLs is
needed however. it can be used without needing to modify existing
UNIX programs to deal with the new protection information. In
other words. ACLs interact well with such UNIX system calls as
open, ere at, stat, and chmod.

In addition, rather than having a copy of an /etc/passwd file on
every node, a unified server-based account registry covers an entire
network [6]. Users therefore have a network-wide identity. Adding
a new user simply involves sending a series of messages to the regis­
try servers via an editing tool. No files need be copied to every node
in the network to make the new user known.

This illustrates another implication of the desire to support large
networks: the only viable way to deal with network-wide databases
and services is to get at them through servers (possibly replicated),
and if necessary, to keep local caches of those databases on each
node. It is not practical to distribute full copies of such databases to
every node each time the databases change.

2-14 Domain/OS Design Principles

Shared Data

The second design principle of the Domain/OS distributed file sys­
tem, sharing by default,jmpliesa global uniform name space. The
name space of the distributed file system appears to users like that
of a giant timesharing file system. It is a traditional UNIX hierarchi­
cal name space, except that absolute pathnames can begin with the
name of the network root (called II). It is also possible to express
pathnames relative to the root of the local node (the I directory).

The network root is a database maintained by the network naming
server. For efficiency, each node has its own cache of the network
root. When the system tries to resolve a pathname beginning with
II, it first looks in the local cache; if the node name is not found
there, it consults the naming server.

The important point is that no matter what node on the network a
user sits at, a given file has the same pathname. In order to share
public files, or other users' private files, no prior arrangements
(such as mounting file systems) need be made. Access is controlled
by the normal file system protection mechanisms, which apply net­
work-wide.

After using this facility for a while, the virtues of sharing become
apparent. For example, it is routine within Apollo's 2S00-node
corporate network (spread over eight buildings and two states) for a
user to send a mail message to a group of users that says "Please
look at my proposal in IImynode/user/proposal, and record your
.comments in the file IImynode/user/comments."

ReCipients can then simply move a cursor onto the first pathname in
the mail message.click a mouse button, and open an edit window
displaying the contents of the file. They can then point at the sec­
ond pathname, click, and edit the comments file. This ease of use
greatly improves the. efficiency and bandwidth of communications,
especially among geographically dispersed groups.

Domain/OS Design Principles 2-15

Extensibility by Users

An important aspect of an open architecture is the ability of system
builders and users to extend the system's functionality. Such exten­
sions represent as much of an investment as applications develop­
ment.

In traditional UNIX systems, functionality is extended by modifying
the kernel. The most common kind of extension is the addition of
device drivers for new devices. This requires a certain level of ex­
pertise in kernel internals and, usually, a set of kernel source code.

More seriously, there is no guarantee that when the vendor supplies
the next release of the operating system,. the user's extensions will
still work. At the very least, any kernel changes will have to be
reintegrated with the source and/or binaries provided by the ven­
dor.

Open System Toolkit

Domain/OS solves this problem by its adherence to object-oriented
structuring techniques. Each object in the file system is marked with
a unique type identifier (type UID). I/O on each object type is han­
dled by a different manager. When an object that is not one of the
built-in types is opened, the device-independent 110 subsystem
(the switch) locates the manager for that type, and dynamically
loads it. It then calls a manager initialization routine which exports
a vector of procedures implementing operations like open, close,
read, write, and seek.

If a manager supports other semantics, say those of a tty, it may
export other sets of operations, such as those for setting erase and
kill characters or for setting raw and cooked modes. Subsequently,
all operations on the new file descriptor will be switched through to
the manager's exported procedures.

Apollo documents the interfaces expected by the switch and guar­
antees that they'll remain the same from one software release to the
next. These published interfaces and the tools for defining new
types are known as the Open System Toolkit. Open System Toolkit

2-16 Domain/OS Design Principles

managers run in user space, and therefore have all the above-de­
scribed facilities available to them for shared memory and synchro­
nization.

Developers can use the Open System Toolkit to add interesting new
file types to the system, while applications that use these new types
continue to work without change. A simple example might be a
circular log file type. Another useful type might be one which main­
tains all the versions of a text file under source version control.
When an application opened a text file under version control, it
would read the most recent version of the text. This obviates the
need to perform a separate "fetch" operation before an application
can look at a source module. The GPIO system can also combine
with the Open System Toolkit to give standard access to new de­
vices.

Objects

An object is a container, and each object has a unique identifier
called a xoid associated with it. The operating system does not care
what the contents of an object are. Objects that the system manipu­
lates can "contain" such diverse things as ASCII files, printers, and
tape drives.

Applications programs generally want to perform certain kinds of
functions on objects, like reading, writing, creating, and deleting.
Traditionally, in the case of peripherals, an operating systems pro­
grammer would write a device driver for a new class of device that
the system would support, add the driver to the operating system
source code, and then rebuild the system software.

In Domain/OS, subroutine libraries supplied with the operating sys­
tem perform basic operations like reading and writing on their asso­
ciated type of object. These subroutine libraries are called type
managers. Each type manager supports certain traits. A trait is an
ordered set of the operations that canbe performed on an object.

Users can add new types of objects and their associated managers
with the Open System Toolkit. Rather than having to rebuild and
reboot the operating system, the user can install a new type man­
ager with a single shell command.

Domain/OS Design Principles 2-17

Type managers can implement standard operations like read and
write in any way appropriate. New system functionality can be
added without disturbing system operation. Thus, the new function­
ality is immediately available to all programs.

Not all functions need be implemented for every type manager, of
course. For example, the type manager for a line printer would
probably not implement a function to move a file pointer.

Type Managers and Traits

The subroutine that implements the functions for a given object
type is called a type manager. In Domain/OS, there are managers
for physical resources like disks, network controllers, and memory,
as well as for abstract concepts like files, processes, and address
spaces.

Since an object is only a container, each type of object on the sys­
tem looks the same to an applications program. Because of this, the
application can contain, say, a read call that is compiled into the
program. At execution time, the user can redirect the program and
the call to operate on any kind of object. For example, if a program
attempts to open an object of the ASCII file type, the ASCII file
type manager performs the appropriate functions. Thus, developers
can create a group of general-purpose utilities that operate on all
object types instead of creating and maintaining programs for each
individual type on the system.

Much of this is true of traditional UNIX implementations, but few
let you easily add new types to the system. As a result, in most
UNIX implementations, users cannot be sure that a new type added
at one release level of the operating system will still operate" cor­
rectly with a new release. Under Domain/OS, new types will work
correctly with later operating system releases.

A trait represents a certain behavior that an object supports. Each
trait is an ordered set of operations. An object supports a trait if the
object's type. manager implements the operations that define the
trait. For every trait that a type manager supports, the manager
provides a list of pointer& to procedures that implement the opera­
tions in the trait. For further details on the trait/type system, see the
paper An Extensible I/O System in Part 2 of this book.

2-18 Domain/OS Design Principles

How Type Managers Are Loaded

When an applications program written using the Open System
Toolkit attempts an operation on a pathname, the system resolves
the name of the object into a xoid and then ascertains the object
type that the xoid identifies. If the manager for that type is not
currently loaded. the system loads it from the trait/type database
(which tracks which type managers are currently loaded). into the
address space of the process that requested the object.

A type manager is loaded only when a process demands it. Unlike a
device driver. the manager does not need to be bound into the
operating system in advance. Thus. a type manager doesn't con­
sume system resources until it actually is loaded.

Extended Naming

One of the traits that a type manager may optionally support is
known as extended naming. When the system name resolver en­
counters a pathname component that is not a standard directory
(called an "extended naming object") but unresolved pathname
text still remains, the rest of the text is passed to the open operation
of the type manager that supports the extended naming object type.
The interpretation of the residual text depends entirely on how the
manager is written.

For example. a manager to control source versions could be written
in such a way that trying to aCCess the pathname Iprogs/main.c
would give the application the most current version of the source
file for editing and compiling. while specifying the pathname
Iprogs/main.cl7 would provide version number 7. and naming
Iprogs/main.c/-l would provide the penultimate version.

A more typical use of extended naming is to provide gateways to
non-Apollo file systems. For example. a Network File System
(NFS *) mount point could be an extended naming object sup­
ported by the NFS type manager. All pathname text beyond the
mount point would be interpreted by the NFS type manager as be­
ing relative to the toot of the remote file system mounted at that
point.

* NFS is a trademark of Sun Microsystems. Inc.

DomainlOS Design Principles 2-19

This mechanism provides a relatively simple way for users to build
gateways to any kind of foreign file system to which they might want
transparent access. All that is necessary is to write the type manager
and a server to run on the foreign machine to handle remote file
system requests.

Network Computing System

Another important way in which users can extend the functionality
of the system is via the Network Computing Architecture (NCA).
The Network Computing Architecture is a framework for develop­
ing distributed applications. It allows optimal use of computing re­
sources and even allows users to take advantage of parallel process­
ing and specialized hardware. It also provides a way for machines to
advertise idle computing facilities.

The Network Computing System (NCS) is a portable implementa­
tion of the Network Computing Architecture that runs on UNIX
systems and other systems. It provides tools, servers, and informa­
tion brokers to develop distributed applications. NCS extends the
Domain/OS concept of objects to include replicated objects - cop­
ies of a single object, all with the same unique identifier. These
replicas are weakly consistent, that is, all copies of an object may
not always be in an identical state. However, a weakly consistent
replica is more likely to be available than a strongly consistent rep­
lica (one of many copies guaranteed to be identical).

NCS consists of two major pieces, remote procedure calls and lo­
cation brokers. Remote procedure calls operate in programs as lo­
cal procedure "calls. However, they allow a process on one machine
access to data, programs, or devices on another machine, by caus­
ing a server on the remote machine to execute subroutines on the
program's behalf. Remote procedure calls enable an application to
be run in a distributed fashion, without a programmer having to
rewrite the application.

In a network where considerable distributed processing occurs, ap­
plications must have access to information about available machines
and CPU cycles. Location Brokers store and administer this type of
information,alIowing NCS applications to bind dynamically to dif ..
ferent services without being rewritten. Location 13rokers can be
replicated easily, to provide reliability. Manyservices augment the

2-20 Domain/OS Design Principles

NCS tools, including license servers that provide more flexible soft­
ware licensing.

NCS is portable and allows system software and applications to ob­
tain services' that are implemented on both Apollo's and other
manufacturers' machines. Because these services may be impossible
or expensive to provide locally, NCS truly extends the power of the
local system.

In addition, NCS increases homogeneity in system administration.
For example, Apollo uses a distributed registry - a database that
holds all user account and group and organization information. This
distributed registry is portable to any UNIX system. Thus, a mixed­
vendor network can handle user accounts under a single unified
mechanism.

Support for Multiple Operating System
Environments

The state of affairs in the UNIX world today is such that there are
really two de facto standards: AT&T's System V and Berkeley's
VMUNIX. Until a single standard is accepted by an overwhelming
portion of our customer base, Domain/OS will include and support
both variants.

We view Domain/OS as a single operating system with a very rich
set of system services (primitives). Some of these primitives are
found in other UNIX systems (system calls and library routines).
Other interfaces are unique to Domain/OS.

Programmers are free to use whatever primitives they like, but pro­
grams designed to be portable to other UNIX systems should re­
strict themselves to the standard UNIX interfaces. Programs that
use only the proprietary Domain/OS primitives are sometimes
known as "Aegis programs," mainly because they use calls that
have historically been documented in the Aegis reference manuals.

In order to provide maximum portability of software from Domain/
as to other Berkeley or System V UNIX systems, Apollo provides

Domain/OS Design Principles 2-21

two complete and separate UNIX environments, rather than a hy­
brid of the two. Any workstation can have one or both UNIX envi­
ronments installed, and users can select which environment to use
on a per-process basis.

Two key mechanisms support this facility. First, every program can
have a stamp applied that says what UNIX environment it should
run in. The default value for this stamp is the environment in which
it was compiled.

When the program is loaded, the system sets an internal run-time
switch to either berkeley or alt, depending on the value of the
stamp. Some of the UNIX system calls use this run-time switch to
resolve conflicts when the same system call has different semantics
in the two environments.

The other mechanism is a modification of the pathname resolution
process, such that pathname text contains environment variable ex­
pansions. For example, the pathname Itmpl$(ABC) would expand
to Itmp/Ex00324, if the environment variable ABC had the value
Ex00324 in the current process.

When UNIX software is installed on a node, the standard trees
(/bin, lusr) are installed under directories called bsd4.3 and
sysS.3. The names Ibin and lusr are actually symbolic links de­
pendent on the value of an environment variable named SYSTYP E.
That is, Ibin is a symbolic link to 1$ (SYSTYPE)/bin. When the pro­
gram loader loads a stamped program, it sets the value of SYSTYP E
to either bsd4.3 or sysS.3, according to the value of the program
stamp. Therefore, a program that refers to a name in one of the
standard directories will access the correct version for its environ­
ment.

2-22 DomainlOS Design Principles

Support for Multiple Processors

The new generation of workstations includes multiple tightly cou­
pled CPUs in one system. However, the UNIX system was originally
designed to run on single processors. Jans points out [4} that a
major problem is not just to fix the way critical sections in the
UNIX kernel are protected for a multiprocessor, but simply to iden­
tify all the critical regions. This is a problem because a UNIX kernel
process assumes that other kernel code will not refer to kernel data
structures unless the kernel process explicitly gives up the processor
through a call to sleepO, or unless an interrupt occurs.

Single-processor UNIX systems handle the interrupt case by tem­
porarily raising the processor priority to a high enough level to pre­
vent any interrupt handlers from altering a critical data structure. In
a multiprocessor system this is not sufficient, since multiple kernel
processes could be running simultaneously. Therefore, access to
data structures inside critical sections must be explicitly synchro­
nized with a mechanism like semaphores or eventcounts.

In Domain/OS, eventcounts form the basis of synchronization
among processes. Every critical section is protected by a mutual
exclusion lock/unlock ·pair. When a process reaches a critical sec­
tion, it must be able to acquire the lock before it can continue.

Domain/OS Design Principles 2-23

Conclusions

Domain/OS is designed to meet the challenges offered by loday's
technology, and to solve the problems faced by today's users and
system developers.

Foremost among these challenges is the need to share computing
resources of diverse origins as seamlessly as possible. Meeting this
need implies strong support for existing standards and pushing be­
yond the standards where they fall short of users' needs. At the
same time, part of the Domain/OS philosophy is to take advantage
of the inherent homogeneity among Apollo systems to provide high
levels of performance and transparency. A prime example of this is
the Apollo distributed file system with its uniform name space and
simple administration.

An important goal of Domain/OS is to provide flexibility for future
changes and expansion, both by Apollo and by its customers. To
this end, the system employs the principles of object-oriented de­
sign, in which pieces of functionality can be replaced with little or
no impact on other portions of the system.

To provide the openness necessary for users to adapt the system to
their own needs, the same mechanisms used internally to structure
the operating system are all made available to users.

In these ways, we expect that Domain/OS will prove to be a supe­
rior base for meeting the challenges of the next several years.

2-24 Domain/OS Design Principles

References

[1] M. Bach and S. Buroff. Multiprocessor UNIX Systems.
Bell System Technical Journal, 63, No.8, pp. 1733-1749.
1984.

[2] T.H. Dineen, P.J. Leach, N.W. Mishkin, J.N. Pato, and
G.L. Wyant. The Network Computing Architecture and
System: An Environment for Developing Distributed Ap­
plications. Proceedings of the Summer 1987 USENIX Con­
ference, pp. 385-398. 1987.

[3] G. Fernandez and L.W. Allen. Extending the UNIX Pro­
tection Model with Access Control Lists. Proceedings of
the Summer 1988 USENIX Conference. 1988.

[4] M.D. Janssens, J.K. Annot, and A.J. Van De Goor.
Adapting UNIX for a Multiprocessor Environment.
CACM, 29, No.9, pp. 895-901. 1986.

[5] D. McCracken. Extensions to UNIX Signal Functionality
for Modern Architectures. 1988.

[6] J.L. Pato, E.M. Martin, and B. Davis. A User Account
Registration System for a Large (Heterogeneous) UNIX
Network. Proceedings of the Winter 1988 USENIX Confer­
ence, pp. 155-161. 1988.

i)omainlOS Design Principles 2-25

Extensions to UNIX Signal Functionality for
Modern Architectures

by

Dave McCracken

Abstract

While signals have long been a useful feature in UNIX systems,
some modern innovations, such as shared global libraries and user
space shared semaphores, have made the current implementation
inadequate. In this paper we look at two extensions to the signal
mechanism that provide the extra functionality required.

A simple user space inhibit/enable mechanism provides cheap pro­
tection from signals for critical sections of code, allowing some code
that is only in the kernel for this protection to run in a shared li­
brary.

A nested cleanup handler allows reliable cleanup of semaphores in
shared memory, as well as other resources the kernel may not oth­
erwise be able to restore on process death.

Introduction

Signals were originally developed as a way of prematurely terminat­
ing a process, either because of some fault the process generated or
by some external event. After the ability to trap these signals was
provided, the meaning expanded to include other events, such as
timers, suspend/resume mechanisms, and software I/O interrupts.

Copyright © 1988 Apollo Computer, Inc. Unpublished, all
rights reserved.

Signal Extensions 3-1

Some of the flaws in the early implementations, such as the inability
to protect critical sections of code without missing the signal, were
addressed by Berkeley and, later, by AT&T with the ability to delay
a signal's delivery.

New architectures now gaining popularity are again making the ex­
isting signal model inadequate. With the introduction of sema­
phores in shared memory comes the need for cheap concurrency
control, along with the need to clean up the locks if a fault occurs.
Global shared libraries are taking over some of the functionality
previously found in the kernel, which requires ~rotection from
asynchronous events.

In this paper we examine some of the solutions implemented as part
of the Apollo Domain/OS implementation of a UNIX operating sys­
tem. Cheap nested cleanup handlers solve the semaphore problem,
and a fast inhibit/enable mechanism protects the libraries during
critical code.

Global Shared Libraries

The Problem

In Apollo's Domain/OS, the use of global shared libraries has al­
lowed some of the functionality traditionally found in the kernel to
be moved into user space. In fact, a large portion of the kernel
commonly considered part of the "system call" environment has
been moved to libraries, with more primitive calls into the kernel
for things that really require the additional privileges the kernel pro­
vides.

A problem with this model is that, while this code does not really
require kernel protection and privileges, it does require protection
from asynchronous interrupts, or signals. While this can be pro­
vided by a kernel primitive, in many places performance is also
important and another system call, with its attendant overhead, is
too expensive.

3-2 Signal Extensions

The Solution

One area that has benefited from moving functionality into libraries
is the UNIX signal subsystem. While parts of the delivery mecha­
nism must be in the kernel, particularly the decision whether to
interrupt the target at all, much of the user-supplied handler infor­
mation can be stored in user space and only a subset of information
forwarded to the kernel portion so it can make its initial delivery
decision.

The two parts of the handler are tightly coupled and include a
handshake mechanism, so the kernel handler does not consider the
signal delivered until the library code acknowledges receipt of the
signal. This occurs just before the user-specified handler is called.

With this model, the problem of inhibiting the delivery of signals
becomes simple to solve. We have created an inhibit counter in
user space that may be incremented and decremented by calls to a
pair of small library routines. Since there are no kernel traps in­
volved, these calls are very fast, typically less than ten machine
instructions. This allows even commonly used code to easily pro­
tect its critical code sections without seriously degrading perform­
ance.

The inhibit counter is integrated into the signal handler at the point
where the signal is delivered to the library handler in user space.
The first operation performed in the handler is to check this
counter. If it is non-zero, the handler sets a flag indicating a signal
is pending and returns to the interrupted code without delivering
the signal any further. Since the kernel handler is waiting for the
library handler to acknowledge receipt of the signal, it is left pend­
ing, and other signals are blocked until this condition is cleared.

When the inhibit counter is decremented to zero and a signal is
pending, the library requests a re-signal from the kernel handler.
This time the check in the library handler will pass and the ac­
knowledgment will be sent, allowing the kernel handler to mark
that signal as delivered and no longer pending (see figure).

Signal Extensions 3-3

User
Program

n
-

Library
Signal

Handler

Signal Interrupt

--Inhibit> a

Return to
Interrupted Code

--..
Enable

Deliver Signal

Inhibit = a

Request
Signal

Redelivery

-
Inhibit = a Redeliver

Signal

User
Signal

'----- Handler

Signal Delivery Sequence

3-4 Signal Extensions

Kernel
Signal

Handler

...

... ,.

Semaphores in Shared Memory

The Problem

Some form of handler is necessary to trap any fault or signal that
the process may receive while the semaphore is locked. The signal
handling mechanism provides some of this functionality, but falls
down in several areas:

• Each signal that may be received must have a handler set
for it.

• Cleanup needs to be done even for "uncatchable" signals,
Le., SIGKILL.

• It does not allow nesting of semaphore locks in different
sections of code with separate cleanup handlers.

The Solution

Apollo's solution to the problem of cleaning up user-space sema­
phores, along with other important user state, is to allow the user to
set dynamic cleanup handlers. These handlers are similar to
setjmp, in that the user specifies the save area and that the return
status indicates whether it was set or invoked.

'The cleanup handler differs from setjmp, however, in two impor­
tant ways. First, these handlers are integrated into the signal han­
dler and are automatically invoked whenever there is no user­
specified handler for a signal that would cause process death. . Sec­
ond, the cleanup handlers¢an be nested. Setting a new handler
when there is one already set behaves like a stack push, making the
new handler the first one invoked. The previous handler is re­
established as the current handler when the new handler is invoked
or released.

When a handler is invoked, it returns again from the "set" can,
with the return status indicating what signal or error caused the in­
vocation. The user program then has several options. If it was an
error the routine was expecting, it can re-establish the cleanup han­
dler and continue or return synchronously to its caller. Otherwise,

Signal Extensions 3-5

the convention is for the routine to call a special routine that will
invoke the next handler in the chain, passing the status on.

If a routine that set a cleanup handler completes normally, the han­
dler must be explicitly released before the routine returns to its
caller.

An additional guarantee that all cleanup handlers are run is that the
exit call invokes the cleanup handlers before the process is termi­
nated. This ensures that any global machine state is reset no matter
what path the process takes when it dies.

To ensure that the cleanup handler chain is kept intact during a
iongjmp, all cleanup handlers set between the longjmp call and the
code where the setjrnp was done are invoked. A special status is
used for these cleanup handlers to indicate that a longjmp is in
progess.

Conclusion

When new functionality is added to a UNIX system that interferes
with the original signal model, we have shown that it is possible to
extend that model in a compatible way to support the more com­
plex interactions required by the new features. This issue will gain
even more importance in the future as processes rely more on fea­
tures that cannot allow uncontrolled signal interrupts or process
death.

3-6 Signal Extensions

Detailed Signal Delivery Sequence

• The signal is passed to the kernel with kill 0 .

• If the signal is explicitly ignored or "ignore by default," it
is dropped, else it is set pending.

• As soon as the signal is not blocked, the target process is
interrupted.

• If a signal stack is specified, the user stack pointer is
switched.

• The kernel signal delivery pending flag is set.

• The library signal handler is called.

• If the inhibit count is non-zero, the library signal handler
flags that a signal is pending and returns to the interrupted
code.

• When the enable is called that sets the inhibit count to
zero, the kernel is notified and the pending signal is re-de­
livered.

• When the inhibit count is zero, the library handler ac­
knowledges delivery of the signal, and the kernel signal de­
livery pending flag is cleared, freeing the kernel handler to
deliver another signal.

• The user signal handler is checked and, ·if it is not default,
it is called. When it returns, if it does, the signal is dis­
missed and the process resumes where it was interrupted.

• If there is no user signal handler, the first cleanup handler
in the chain is invoked.

Signal Extensions 3-7

Example of Using a Cleanup Handler

write_shared_memory(address, value, sem)
int *address;
int value;
semaphore *sem;
{

pfm_$cleanup_rec cl rec;
status_$t status;

/* trap any errors */
if «status = (pfm_$cleanup(cl_rec)) !=

pfm_$cleanup_set) {
mclear (sem) ;
/* check for bad address fault */
switch (status. all) {

case mst_$illegal_address:
(status.all == mst_$illegal_address))

return(l) ; /* the write failed */
pfm_$signal(status); /* an anonymous prob­

lem, pass it on */

}

}

mset(sem, 1);
*address = value;
mclear (sem) ;

/* lock the semaphore */
/* do the write */

/* clear the semaphore */

pfm_$rls_cleanup(cl_rec, status);
return(O); /* the write succeeded */

----88----

3-8 Signal Extensions

Shared Program Libraries -
The Domain/OS Library Model

by

Bryan Douros

Introduction

At one time, it was necessary for each program to include every­
thing it needed to solve a particular problem. The scope of prob­
lems has expanded, however, and collections of library subroutines
and standard system functions have allowed applications to grow
into very complicated programs. Programmers draw on graphics,
communications, database, and other services to make applications
more usable, but increased functionality also makes them larger
and more difficult to maintain.

Modular programming practices and higher-level languages enable
programmers to maintain their applications more easily. Collections
of related routines are combined into libraries of services, so that
many separate applications can now draw on the same services. In
most systems, library and application routines are bound into a sin­
gle program at link time. While this has extended what applications
can do, there are several weaknesses to this scheme. Linking the
same routine to many applications requires the duplication of the
routine in each application program. This uses more disk space and
increases the working set of the applications.

This scheme causes distribution problems, too. No matter how
modular an application is, bug fixes and performance improve­
ments require relinking and redistributing all the programs that use
these fixed routines. Distribution and maintenance become even
more complicated when different libraries are managed by different
groups, organizations, or even different companies.

Copyright © 1989 Apollo Computer, Inc. Unpublished, all
rights reserved.

Shared Libraries 4-1

To overcome some of these weaknesses, Domain/OS provides the
ability to share libraries among programs with the following effects:

• Linking to libraries can be deferred until program execu­
tion.

• Libraries can be distributed independently of application
programs.

• The same libraries can be shared with many concurrently
executing programs.

Domain/OS uses shared, direct paging of program code so as to
only have one copy of the code in memory. It also uses indirect
linkages to shared library references to minimize the relocation nec­
essary at load time and position-independent code so that shared
libraries can be loaded into any address space. Domain/OS also
uses a table of known globals to make linking the correct routines
easy and extensible.

Indirect Linkages

Domain/OS compilers generate linkages to shared library refer­
ences by way of indirect pointers, so that read-only code doesn't
require relocation. Procedure references call through transfer vec­
tors (which are jump instructions) stored in read-writable sections
to the shared library routine, and are relocated at load time. Data
references use indirect references via an absolute pointer, also
stored in read-writable sections and relocated at load time. This
allows direct paging of shared read-only program code and minimal
relocation of linkage addresses at program loading time.

Position-Independent Code

Domain/OS compilers are capable of generating position-independ­
ent code (PIC), so that the bulk of a program may be loaded at any
free virtual address space the process has. Thus, a minimum of
relocation needs to take place at load time. The compilers use pro­
gram counter (PC) relative branches and instructions, and take the
indirect linkages to the extreme, so that all external linkages are

4-2 Shared Libraries

indirect. This allows shared libraries to be loaded quickly into the
address space, relocating only the external linkages.

Global Address Space

Domain/OS divides the user address space of a process into two
parts, the first of which is private to the process and the second of
which is global to all processes at the same virtual address in every
process. This feature allows shared libraries to be loaded once into
address space, after which every process has access to them at no
cost. Important libraries that are used by every process are dealt
with in this way.

The private address space is user accessible and manageable. The
global space is managed by the process manager (PM) and loads
suitable shared libraries into the process's address space.

Known Global Table

The known global table (KGT) is a system table that keeps track of
the symbols exported by all the shared libraries known to processes.
Eachprocess maintains its own logical KGT, but by maintaining a
global KGT (containing symbols known to all processes) and a pri­
vate KGT (symbols added to this process), the system can maintain
a symbol table that is small but can be completely customized.

When a program with an unresolved external reference is loaded,
the KGT is consulted and references that point to shared libraries
are linked to those libraries. References to a shared library that has
not yet been loaded either cause the library to be loaded and linked
immediately, or cause it to be loaded when the program actually
runs and attempts to call into that library.

Shared Libraries 4-3

The KGT actually consists of three tables:

• The first table, the private KGT, contains symbol entries
currently loaded into the private A space of the process.
Symbols in this table are private to this process. Entries
contain the· ASCII name, the address of the symbol, and
information as to the type of symbol (function, data, or
common). The table is indexed by a hash of the symbol
name.

• The second table, the known library table (KL T), is a ta­
ble of symbol entries that are in shared libraries. Symbols
in this table are private to this process and are entries con­
taining the ASCII name, a reference to the shared library
so that it can be loaded when needed, and a set of flags in­
dicating the behavior that this library should have (loaded
on program execution or loaded at program reference).
The KL T is inherited by child processes (created via fork,
exec, or pgm_$invoke). This is useful for building a set of
shared libraries to be used in the current environment. .

• The third table, the global KGT, is a table of public symbol
entries. These are symbols known to all processes. The
global KGT contains all the symbols of libraries loaded
into the global space and symbols of shared libraries that
are to be loaded into the process's address space as
needed. Entries contain a compressed form of the name
(32 bits), its type (function, data, or common), either an
address of the symbol in global space or information simi­
lar to that in the KL T that describes the library and when
it should be loaded. This table is also indexed by a hash of
the symbol name.

The global KGT is constructed at system boot time and is
very large, since it contains all the symbols known to all
processes. It can use a highly compressed form of the
name, since it is built all at once and compressed symbol
collisions are dealt with specially. This allows a table that
can be searched very quickly to find symbol names.

The KGT is searched in the following order: the private KGT, the
KLT, then the global KGT. This allows private symbols to super­
sede symbols defined in the public space to allow library develop­
ment or private program tuning, while leaving the public libraries
unchanged. The behavior of duplicate symbols in the same table is
undefined.

4-4 Shared Libraries

Global Libraries

Global libraries are a special case of shared libraries. As described
above, libraries loaded into global space are visible to all processes
and have no cost at program load time. To accomplish this, Do­
main/OS loads all global libraries at system boot time.

Global libraries have four classes of storage: read-only procedure
text, global storage (which gets turned into read-only after library
initialization), dynamic storage (run-time stack), and process­
private storage (which is zeroed at the beginning of each process).

Pure functions would be very easy to make into a global library. If a
library has statically initialized state, it is more complex, but the
benefits of global libraries are great and most Domain/OS libraries
are global libraries.

Dynamic Linking

Domain/OS supports a limited form of dynamic linking. A program
loaded with references to undefined procedures has a special jump
vector created which points to a dynamic link snapper routine.
(References to undefined procedures were either not found in the
KGT or found and specified as load-on-reference.)

During execution, a call to this undefined symbol is vectored to the
dynamic link snapper routine and is passed the ASCII text of the
symbol name. It looks for the symbol in the KGT. If the referenced
library is not loaded yet, it is loaded, the jump vector is patched to
the symbol, and the routine is executed. Future references have no
extra performance cost.

If the symbol is not found, a fault is generated to the program. This
can be useful for programs that have many modes and don't always
execute all of their code, for it can defer the expense of loading
shared libraries that might not be used at all. Unfortunately, this
works only for procedure references and not for data references.

Shared Libraries 4-5

System Configuration

Domain/OS reads the file /etc/sys.conf at system boot time to de­
termine which shared libraries should be loaded globally, which
should be loaded on program execution, and which should be
loaded dynamically, at program call time. It contain entries of the
following form:

lib [rary] shared_library yathname flags

The shared_libraryyathname may either be relative to the /lib di­
rectory or an absolute pathname. There may be zero or more flags,
separated by spaces or commas (,). The flags are global, dynamic,
and optional.

Global means that the library is to be loaded into global address
space. Dynamic means that the library loading should be deferred
until the actual execution of the routine utilizing the dynamic link­
ing feature. Optional suppresses the error message if the library is
not at the specified pathname.

If global or dynamic is not specified, the library is loaded at pro­
gram execution time. Because global address space is a limited re­
source on some older Apollo workstations, we included the follow­
ing flags for compatibility:

not 16mb va
-do notload this global on a 16MB virtual address space
machine (DN300, DSP80)

not 64mb va
-do notload this global on a 64MB virtual address space
machine (DN330, DSP90, DN5xO, some DN3000)

These commands can set by the workstation's administrator to
specify which shared libraries will be in the public KGT, the set of
symbols known to all processes. Changes to the sys.conf file
changes the public symbols only at the next system boot time.
Global libraries must have no duplicate symbol definitions and only
external references to other global libraries.

4-6 Shared Libraries

Private Configuration

There are several methods whereby users can specify additional
shared libraries. Shells distributed with Domain/OS have two added
internal commands, inlib and lIib. The inlib command adds a
shared library to the KL T for the current process. The IIib com­
mand lists the shared libraries in the current process's KL T. Cur­
rently, all shared libraries added with inlib are loaded at program
execution.

Programmers can also specify at program link time what libraries
are needed for the program. The Ibin/ld and leorn/bind tools have
options which allow you to include libraries. When the program is
executed, those shared libraries are loaded with the program.

----gg----

Shared Libraries 4-7

The Domain/OS Input/Output System
by

David A. Buckle

Abstract

While Domain/OS offers several novel features in the area of exten­
sible I/O [3] and user-level device drivers [1], there is still a need
for basic I/O services within the kernel. Continual development of
new workstation platforms for Domain/OS requires continual en­
hancement of the kernel 1/0 system to support these new plat­
forms.

This paper briefly describes the components of the kernel I/O sys­
tem, and identifies the approaches taken to reduce development
costs associated with new peripheral support.

Introduction

Domain/OS is the operating system kernel that runs on all Apollo
workstations. It provides support for a variety of different peripher­
als across the complete range:

• Winchester Disk

• Floppy Disk

• Mass Storage Module

• Apollo Token Ring

• IBM Token Ring

Copyright @ 1989 Apollo COmputer, Inc. Unpublished. all
rights reserved.

DomainlOS I/O 5-1

• ETHERNET*

• Cartridge Tape

• Color and Monochrome Monitors

One of the I/O system design goals was to simplify the development
of new drivers. This has been achieved by reducing the interaction
between driver modules and the other components of the operating
system, and by providing common interface modules for the various
classes of device present in the system. The next section describes
this structure.

Overall Structure of the 1/0 System

The I/O system is implemented in several layers:

• Device Class

• Device Drivers

• Resource Manager

• Bus Interface

The following figure shows the relationships among layers.

*ETHERNET is a registered trademark of Xerox Corporation.

5-2 Domain/OS I/O

System Call Interface
f-- - 1-- ----------

,It

PBU File and Memory Management

Driver Class

, ,It

Driver Driver

,if , ,
I/O Manager

,~ "

Bus Handler Bus Handler
I

Hardware

Relationships of Layers in the JlO System

While lower levels normally provide services to the layers above,
the organization is not strictly hierarchical; class modules can pro­
vide device-independent routines for their drivers, and device driv­
ers have access to the control and status registers (CSR) of the pe­
ripheral controllers without calling resource level routines.

Device Classes

Domain/OS associates each device with one of a number of device
class modules, based on the functions and use expected of the de­
vice.

Domain/OS //0 5-3

All I/O requests from the upper layers of the operating system are
made through the class module, which then vectors these calls to
the driver supporting the requested device.

Each class provides a set of procedural interfaces to the upper lev­
els of the operating system, tailored to the class, and not necessarily
the same as the interfaces provided by other classes. This approach
contrasts with the UNIX device model where all devices fall into
one of two types, block and character, all block devices having one
set of interface routines, and all character devices having another.

Thus, for example, the network class can provide procedural entry
points that reflect the functions expected of network devices,
whereas UNIX network drivers are forced to map these network
specific functions onto a generic entry point such as ioctl.

The device class modules can also provide device independent rou­
tines for use by the driver modules. For example, the disk class
provides routines to sort queues of transfer requests, enabling disk
drivers to easily manage head scheduling.

Device Drivers

All Domain/OS device drivers have the same basic structure; a set
of entry routines called by the class module and run in a process
context, and one or more interrupt handlers that execute
asynchronously.

Driver entry routines are always called from the class module. Syn­
chronization between the in-process driver routines and the
asynchronously called interrupt handlers is accomplished via an
eventcount mechanism [2]. Mutual exclusion locks are used to pro­
tect common data structures.

Resource Manager

The I/O resource manager module provides a central place for the
management of the hardware and software resources required by
the device drivers. These resources include hardware interrupt vec­
tors and software memory regions.

5-4 Domain/OS lIO

The module provides services to both system devices and also to the
Peripheral Bus Unit (PBU) support module, which in turn provides
services to user-level GPIO device drivers.

Most resources are acquired during system initialization rather than
being statically reserved at system generation. Devices that are not
present in the hardware configuration do not lock up any hardware
resources, which are therefore available for user-level devices. This
approach to resource allocation works well with the fixed configura­
tion aspects of Domain/OS, and allows the same version of the op­
erating system to be used on different hardware configurations with­
out imposing restrictions on user-level drivers.

Bus Interface

Bus modules are provided for the various I/O buses present on
Apollo hardware. All bus modules provide the same set of service
routines.

Initializa tion

During system initialization, the I/O resource manager is called to
perform I/O-specific initialization tasks. Associated with each de­
vice controller in the system is a device descriptor data structure
that describes the hardware characteristics of the controller, and
contains a pointer to the supporting device driver initialization rou­
tine. The I/O resource manager traverses the controller data struc­
tures, and calls each initialization routine.

Each driver checks for the presence of its controller, and if it is
present, the driver registers itself with its known class module, and
with the I/O resource manager.

Class registration enables the driver to pass an entry point vector
(EPV) to the class module. All calls from the class module into the
device driver are made through this EPV, which contains pointers
to all the exported procedures.

Each device class is free to define the set of entry points most rele­
vant to the class, when then define the formal interface between the
class and any driver supporting that class.

Domain/OS lIO 5-5

During the initialization phase, the driver also registers its interrupt
handlers with the I/O resource manager. Thus, the only entry point
that needs to be directly exported from the driver module is the
name of the initialization routine.

Configura tion

Configuration of device drivers within an operating system can be
considered in three separate stages:

• Specifying which device drivers are required in the system.

• Specifying the- hardware characteristics of the devices.

• Associating a logical name to be used by the remainder of
the as and/or the user programs with a specific hardware
device.

Domain/OS traditionally runs on a limited set of hardware configu­
rations and does not provide any means for on-site tailoring of the
kernel. All devices needed by the system that could be present on
any hardware platform must be bound into the operating system
executable.

While this does restrict the system somewhat, it also has these bene­
fits:

• There is no need for a local administrator to perform on­
site configuration.

• In a local area network, nodes can be booted from any
other node holding the appropriate operating system exe­
cutable without any problems arising from incompatible
configurations. Standard naming conventions are used to
locate the actual as file.

Internally, however, the software is organized around the above
configuration requirements. The device descriptors used during sys­
tem initialization effectively provide a central description of the
hardware configuration. Each descriptor represents a device; the

5-6 Domain/OS 110

descriptor contents are used to specify the hardware characteristics
and the device name to be used to address the device.

Summary

Most new devices fit under one of the existing Domain/OS device
classes, and hence can take advantage of the generic device support
provided by the class modules.

DomainlOS 110 5-7

Disk Class to Driver Interface

The disk EPV contains the following entry points:

disk_open _proc

disk_close _proc

5-8 Domain/OS I/O

Open a disk device and return drive parame­
ters to the caller

Close a disk device

Spin down active disks (called only from
os_$shutdown)

Check removeable media changes

Service data transfer requests; multiple blocks
may be requested with a single call to this
routine; on return it indicates whether all
transfers have been completed

Check error status of non-blocked queued
requests

Return disk controller statistics (number of
reads/writes. etc.)

Network Class to Driver Interface

The disk EPV contains the following entry points:

Start network service

Stop network service

net_load _proe Load firmware

net_send _proe Transmit a packet

Return network device statistics

Control network sends/receives

Cleanup (process termination)

User-level open routine

User-level close routine

User-level send packet routine

net rev sve User-level receive packet routine

User-level control routine

Domain/OS 110 5-9

Bus Module Interface

Initialize bus module and data structures

Allocate an address in the bus address space

Translate bus address into physical page num­
ber

Associate an interrupt handler with an inter­
rupt vector

Enable device interrupts for a device

Disable device interrupts for a device

bus_device_interrupting Check whether device has an interrupt pending

5-10 Domain/OS 110

References

[1] Apollo Compute:r:, Inc. Writing Device Drivers with GPIO Calls,
Order No. 000959.

[2] David P. Reed and Rajendra K. Kanodia. Synchronization with
Eventcounts and Sequencers. Communications of the ACM.
1979.

[3] Jim Rees, Paul H Levine, Nathaniel Miskin and Paul J Leach.
An Extensible 110 System. USENIX Proceedings. (Summer,
1986).

Domain/OS 110 5-11

Extending the UNIX Protection Model

with Access Control Lists

by

Gary Fernandez, Larry Allen

Abstract

The UNIX operating system uses a simple and straightforward
model for the protection of objects in the file system, granting ac­
cess rights based on the ownership of the object. This simple model,
however, may not be flexible enough for large user communities, or
for communities with complex requirements for controlled data
sharing. This paper describes an Access Control List extension to
the UNIX protection model, which preserves the behavior of the
existing UNIX programming interface while greatly increasing the
flexibility of the protection system.

Introduction

This paper describes our efforts to extend the UNIX protection
model by adding Access Control Lists (ACLs). We first provide a
summary of the UNIX protection model, then describe our ex­
tended protection system. We describe how we integrated the ex­
tended protection system with the UNIX protection system and dis­
cuss some of the details involved in implementing the extended pro­
tection system. Examples demonstrate the extended protection sys­
tem, and finally, we summarize and describe a few lessons we
learned.

Copyright © 1988 Apollo Computer, Inc. Unpublished, all rights
reserved.

Protection Model Extensions 6-1

Overview of the UNIX Protection Model

This section first. describes. the UNIX Protection Model, and then
discusses why extensions are appropriate.

The UNIX Protection Model

The concepts of owner ids and group ids are the basis of the UNIX
protection model [7]. Each file and every process has an associated
owner id and group id. With BSD4.3 a process may have multiple
groups. Processes have two sets of ids: effective ids are used for
rights checking; real ids keep track of the true ids for a process for
which the effective ids have been altered temporarily.

The owner and group ids for a process are inherited from the par­
ent process. When a file is executed the effective ids for the proc­
ess may be taken from the executable file, depending on attributes
attached to the file: the setuid and setgid bits. System calls may
change a process's owner and group ids, but these operations are
highly restricted.

The owner and group ids for a file are inherited from the ids of the
process that creates the file. BSD4.3 takes the group id in file crea­
tion from the parent directory, not from the process. A file's owner
or the super-user may change a file's owner and group ids by using
system calls. BSD4.3 restricts these changes to the super-user.

Each file has protection information for three categories of users:

• Owner - processes whose owner id matches the owner id
of the file

• Group - processes that are not in the owner category and
whose group ides) match the group id of the file

• Other - processes that are not in the first two groups

Protection is checked in the order owner, group, and other; the
first matching protection applies.

Protection permissions are read, write, and execute for files, and
read, write, and search for directories.

6-2 Protection Model Extensions

Only the owner of a file or the super-user may change the permis­
sions associated with a file.

Discussion of UNIX Protection Model

The UNIX protection model works well when the set of persons
accessing a file is a single person or a single group. However, once
it is necessary to allow special access to more than one person or
more than one group, the UNIX system is unable to describe this
protection. Specially created groups partially solve this, but prove
difficult to administer.

Traditional protection alternatives are capabilities and access con­
trol lists. Capabilities operate by passing a ticket allowing access to
an object [4]. Restrictions may be placed on the number of copies
of a capability, whether it may be passed on to other processes,
access rights available, etc. Access control lists provide a list of
(person, rights) pairs. By comparing entries in the list with the sub­
ject requesting access, a matching entry is located. The matching
entry then determines the applicable rights.

Access Control Lists are not new. Multics was an early system using
Access Control Lists as a basis for its protection system [6]. Aegis,
Apollo's proprietary operating system, also used a protection system
based on Access Control Lists [3, 5]. Aegis is the predecessor
operating system on which our extended protection system is built.

Overview of Extended Protection System

This section describes the extended protection system. It provides
an overview, describes how objects are protected, and explains how
protections are assigned.

Protection Model Extensions 6-3

Extended Protection System Basics

The extended protection system provides several additions to the
basic UNIX protection:

The number of recognized organizational divisions is extended from
two (person and group) to three (person, group, and organization).
This more closely matches the real world divisions that occur in
large organizations and large networks. The concept of organiza­
tion allows a more hierarchical partitioning of the users of the sys­
tem. The network user registry could be partitioned based on
organizations, for example. Each process has, in addition to a real
and effective person and group ids, real and effective organization
ids associated with it. Each file system object also has associated
with it an owning organization.

New protection rights are defined which allow persons other than
the object owner to change the protection of an object and which
prevent an object from being accidentally deleted.

Additional protection entries describing protection for persons be­
side the protections for the owner, the owning group and "other"
are added. These additional entries may be used to provide more
granularity in the granting or denial of access.

Each directory contains "initial" protection information which is
used to determine the initial protections which are applied to ob­
jects which are created in the directory.

Protection of an Object

Each object has associated with it an owner, an owning group, and
an owning organization. Rights maybe associated with each of the
owning fields or with "world," which is used for processes not
matching any other protection entries. Because this information is
always present and is used as entries in rights checking, we refer to
this information as required entries. Optionally, an object may have
associated with it extended entries, which are Access Control List
entries. ACL entries are pairs of the form (subject identifier,
rights). A subject identifier (SID) consists of three fields: the per­
son, the group, and the organization. SID entries in extended en­
tries may have each portion of the SID wildcarded: the character

6-4 Protection Model Extensions

% is a wildcard with the meaning "match anything in this field."
An example of an extended ACL entry might be:

This means that john_doe has read, write, and execute rights if he
is a member of any group in the r d organization. Extended en­
tries provide finer control over access to objects.

Each process has both a real and an effective subject identifier.
The real SID corresponds to the original identification of the proc­
ess, while the effective SID may be different as a result of setID
programs. SetID programs work as in UNIX protection; an executa­
ble object may be marked so that any process running the program
will have its effective SID changed while the program is running.
Setid may change all three fields of the SID.

The extended model includes the standard UNIX protections of
Read, Write, and Execute (Search). We have also added new
rights: Protect, which determines whether an SID may change the
protection on an object; and Keep, which prevents an object from
being deleted or having its name Changed. In addition, a required
entry may be marked "ignored." This means that the owner,
group, or organization information is present, but that rights check­
ing will not use this information.

Rights checking is similar to rights checking in the UNIX operating
system. Rights checking proceeds as an ordered walk through the
protections specified in the required entries and the extended en­
tries. Given an effective SID, rights are examined as follows:

• If the effective person matches the owner, the owner rights
are returned.

• If the effective person matches any extended entries of the
form person.X.X, where X means don't care (these are
person entries), the rights from the entry are returned.

• If the effective group matches the owning group, the group
rights are returned.

• If the effective group matches any extended entries of the
form %.group.X (group entries), the rights from the entry
are returned.

Protection Model Extensions 6-5

• If the effective organization matches the owning organiza­
tion, the organization rights are returned.

• If the effective organization matches any extended entries
of the form %. %.org (organization entries), the rights
from the entry are returned.

• Rights available to "world" are returned

Note that the algorithm always checks the specific required entry
before extended entries of the same type. Also note that there is
no requirement at any point that extended entries of a particular
type be present; rights checking proceeds to its next phase if none
are present. A summary rights mask limits rights available in ex­
tended entries. This mask is described in more detail later.

Assigning Object Protection

Protection information is normally applied to an object when it is
created. Inheritance from the directory in which the object is cre­
ated determines the necessary protection information. Each direc­
tory has two sets of protection information: initial file protection,
which is used when a file is created in the directory, and initial
directory protection, which is used when a sub-directory is created
in the directory. These initial protections are in addition to the
standard protections associated with all objects.

The extended protection system provides several different styles of
initial protection (Aegis, BSD4.3, System V.3) to allow different
classes of users to have their favorite object protection. Aegis users
typically give specific protection information to be applied to all
objects created in a directory. System V.3 users expect objects
created in a directory to be given protection information based on
the effective SID of the process creating the object. BSD4.3 users
expect the SID of the creating process and the containing directory
to determine the protection for objects created in the directory.
These alternatives are all provided by initial protections associated
with directories.

File creation can be viewed as taking place in two steps. First, the
object is created using default information based on the creating
process. The default information may then be overridden by initial
file or directory protection information.

6-6 Protection Model Extensions

Two pseudo rights for initial protections allow appropriate UNIX
behavior: "inherit SID information from process" and "use rights
specified by the process, masked by umask." The first pseudo right
means the SID information (process, group or organization) is not
to be overridden by information in the directory. The second
pseudo right means the rights specified by the process (and modi­
fied by "umask") are not to be overridden by information in the
directory. These pseudo rights allow UNIX behavior while allowing
Aegis style inheritance to continue to override the process informa­
tion. It is necessary to distinguish between BSD4.3 and System V.3
semantics because BSD4.3 specifies that the owning group is to be
inherited from the containing directory, whereas in System V.3 the
owning group is inherited from the creating process.

Integrating ACLs with UNIX Protections

Goals

This section describes how the extended protection system extends
the standard UNIX protection model, paying particular attention to
the behavior of the standard protection-related UNIX system calls
when extended protections are used. Goals describes our goals. We
also present the motivation for the initial protection mechanism,
how querying and modifying protections works, architectural princi­
ples, and the integrated protection model.

In designing the extended protection system, our primary goal was
to make it possible to use unmodified UNIX programs in a system
where administrators or users have chosen to use extended protec­
tions, and get "reasonable" results. Two sets of UNIX system calls
deal with protection:

• File creation calls (open (), creatO, mknod 0, mkdirO),
which specify initial protection modes and ownership in­
formation for newly created files.

• Calls for querying about or changing file attributes (statO,
chmodO, chown(», which allow the client to read or
modify the protection-related attributes of files.

For file creation, we wanted to enable system administrators or or­
dinary users to conveniently use the extended protection system

Protection Model Extensions 6-7

without modifying any UNIX programs; this implies the ability to
specify initial protections to be applied to a file external to the pro­
gram creating the file. We wanted to design a "mechanism" for
specifying initial file protections that could support a variety of
"policies" for use of the protection system as a whole; in particular,
because Apollo's UNIX product is a dual port of Berkeley and
AT&T variations, it was important to support both the BSD4.3 and
System V.3 policies for initial file protection.

For the system calls that query and modify file protections, it was
again important to maintain reasonable behavior for unmodified
UNIX programs in the presence of extended protections. Because
standard UNIX system calls only deal with the rights of the owner,
group, and "others," a secondary goal, time permitting, was to add
a new programming interface to the extended protection system.
We felt that the protection policy would be set by users or system
administrators, or would be specified during installation of software
subsystems, and hence it would be uncommon for programs to ex­
plicitly create or apply extended protections.

Initial File Protection Mechanism

The UNIX protection model, especially in the Berkeley variations,
has the beginnings of separation of the protection policy from the
protection mechanism. In the Berkeley UNIX system, three inde­
pendent specifiers control initial file protections:

• The protection mode supplied in the openO call, from the
creating program.

• The setting of the per-process umask, from the user run­
ning the program.

• Group ownership, from the directory in which the file is
being created.

Each of these specifiers is a potential way of specifying extended
initial protections; we concluded that the best approach was to ex­
tend the notion of inheritance from the directory in which the file is
being created. Because we could not require for existing programs
to be modified, we could not require changing the openO call. We
considered extending the "umask" notion to include the ability to
specify extended protection information; this had the wrong level of
granularity for the specification of a protection policy. There is no

6-8 Protection Model Extensions

reason to assume that all files created by a given process should be
protected the same way (consider a compiler creating temporary
files for intermediate results and a binary file for the final output).
Specifying the protection policy on a per-directory basis was intui­
tively appealing; it matched common uses of the file system (for
example, all source files in a source tree would have common pro­
tections); and it had worked well in practice in the Aegis operating
system.

Beginning with this idea, we evolved the model for specifying initial
protections. We now describe the algorithm for file creation and
setting the initial protection in more detail:

• Start with the owner, group, and organization of the creat­
ing process, and the protection mode value passed in to
the openO call.

• Modify the protection mode value by masking with the
process's umask.

• For each required entry (identifiers and protection mode
values), if the initial protection specification in the direc­
tory specifies an explicit value, override the value supplied
by the process for that entry. This operation is called
"merging the initial protections."

• If the initial protection specification specifies extended in­
formation, apply the extended information to the file.

• When creating a sub-directory, the initial protection speci­
fications for the sub-directory are inherited from its parent
directory.

The result is a flexible mechanism for specifying the initial protec­
tions to be applied to newly created files. The examples section
presents sample protection policies that use this mechanism.

Inquiring and Modifying Protections

The most difficult task in extending the UNIX protection model
with ACLs arose in ensuring that the existing UNIX system calls for
inquiring and modifying file protections (statO, chmodO,
chownO) continued to have reasonable and consistent behavior,
even in the presence of extended protection information. We real-

Protection Model Extensions 6-9

ized early in the design that there would be circumstances in which
the UNIX calls could not provide an accurate representation of the
extended protection information; when using the UNIX calls on
files with extended protection, there would always be a possibility of
unexpected behavior.

Consider the case of the statO call applied to a file with extended
protection. StatO returns (among other things) file protection in­
formation in three categories: owner rights, group rights, and others
rights. Clients of the statO call use this information both to provide
information to users (for example, in listing directories) and to
make decisions about program behavior (the shell will not execute a
script to which the user does not have execute rights). When ap­
plied to a file protected with an extended protection, the statO call
could do one of two things:

• It could "lie" about the accessibility of the file. It could
return the rights for owner, group, and world and ignore
the presence of the extended entries. Or, it could com­
bine the rights granted by extended entries into the "oth­
ers" rights. In either case, clients of statO will be con­
fused: either the client will be unable to access a file to
which statO claims it has access, or the client will have ac­
cess rights not represented in the output of statO.

• It could construct a protection mode accurately represent­
ing the rights of its client. This is attractive, as the client
will never see inconsistencies between the values returned
by statO and the behavior of other UNIX system calls, but
has two serious disadvantages. First, statO would return
different values for different clients; two users listing the
same directory might see different protection modes on
files. (Previous versions of our system used a similar
scheme, which led to confusion among users.) Second,
we felt that the performance degradation caused by com­
puting the protection mode returned by statO on a client­
by-client basis would be prohibitive. StatO is a frequently
used call in UNIX systems; it is the only way to obtain file
attributes, and always returns full information. Expensive
protection mode computation affects all callers.

Similarly, what happens when chmodO modifies protections on a
file with extended protection? The handling of the owner and
group rights is straightforward, but it's not clear what the "others"
rights supplied to chmodO mean. The caller could intend for any
extended entries to be disabled, and the "others" rights to be

6-10 Protection Model Extensions

granted to everyone except the file's owner and group. Alterna­
tively, the caller could be a naive user knowing nothing about ex­
tended protection and simply adding rights for the owner of the file,
and using chmod 0 because it was the only UNIX system call he
knew.

Architectural Principles

Where we could not completely meet our primary goal of "ex­
pected" behavior from UNIX system calls in the presence of ex­
tended protections, we felt there should be architectural principles
from which the behavior can be derived. We identified the follow­
ing principles as being important:

• In the absence of extended protection information, the
protection system must exactly implement the UNIX se­
mantics. It must be easy to configure a system to use only
UNIX protections; having done so, the extended protec­
tion system should be invisible to the UNIX user who does
not use extended UNIX commands. This principle was
met by the system for specifying initial protections.

• The behavior of the UNIX system calls should not be de­
pendent on the identity of the user making the call. For
example, statO should return the same value for the pro­
tection mode irrespective of the identity of the caller.

• UNIX system calls should always err towards increased se­
curity. For example, if any user has read access to a file,
statO should represent that fact, even if that means over­
representing the rights of some users.

• It must be possible, using UNIX system calls, to disable the
effects of the extended protection system. Using chmodO
to deny group and world access to a file should also disable
rights granted through extended entries. This follows from
the previous principle: err towards increased security.

These principles match existing UNIX standards; the IEEE POSIX
specification [8], for example, demands that chmod 0 disable ex­
tended protection information.

Protection Model Extensions 6-11

The Integrated Protection Model

The model for integrating the extended protection system into the
UNIX protection model is derived from the architectural principles
listed above. The protection information for the owner and group
of a file, as returned by statO and controlled by chmodO, is pre­
cisely the protection information for the file's owner and group as
maintained by the extended protection system, while the protection
information for "others" is a summary of all other protection infor­
mation maintained by the extended protection system. This sum­
mary is normally the logical OR of the organization rights, world
rights, and all rights granted by extended entries; but may be modi­
fied by chmodO, as described below. To improve performance,
the inode includes this summary information; it serves a dual pur­
pose:

The statO call returns the summary information as the "others"
rights. For example, if any user other than owner and group has
rights to read a file, the "others" rights returned by statO will in­
clude read rights.

When checking access rights, the system masks the extended pro­
tection information in extended entries with the summary informa­
tion from the inode. ChmodO sets the summary information to the
"others" rights supplied in the chmodO, permitting chmodO to
disable extended entries if desired.

Consider a file with the following protections:

Owner: frank
Group: acct r
Org: finance
World:
Extended Entries:

donna.hdr.finance

prw­
-r--
-r--

-rw-

The protection mode returned by statO will be rw-r--rw-. If the
owner of the file changes the file's protection mode to rw-r--r--,
this changes the summary information to r--. By the masking op­
eration described above, this will effectively remove the Write rights
granted to donna.hdr.finance by the extended entry.

6-12 Protection Model Extensions

Note how this protection model meets the goals described above:

• StatO is fast because it never has to examine the extended
entries. It returns the same protection rights irrespective of
the identity of its caller.

• StatO errs in the direction of increased security: if any
user has Write rights to a file, this fact will be reflected in
the "others" information returned by statO.

• Chmod 0 can completely disable the extended entries.

We have also added a set of utilities that allow UNIX users to list,
copy, and edit ACLs.

Implementation Description

This section provides the reader with a description of some of the
more interesting aspects of the implementation of the extended pro­
tection system.

Storing Protection Information

Protection information is abstracted into two pieces: required infor­
mation and extended information. The object's inode contains the
required information. Extended information, if present, is stored in
a separate object called an ACL object that is pointed to by the
object's inode. ACL objects are immutable and read-only; once
they are created they may not be changed. Changing the protection
associated with an object is accomplished by creating a new ACL
object. ACL objects are shareable; one ACL object may specify
the extended protection information for many data objects. ACL
objects have reference counts; when the last reference to an ACL
object is removed, the ACL object is deleted.

Protection information for initial file and initial directory ACLs is
implemented in a similar manner. A header in the directory con­
tains the initial file and initial directory required information. Sepa­
rate ACL objects contain extended information, if present. When
applying an extended ACL to a newly created file, the reference
count on the ACL object is merely incremented, reducing file crea­
tion costs.

Protection Model Extensions 6-13

A file system scanner allows ACL objects with identical protection
information to be compacted, reducing disk space required for
ACL objects.

Caching of Protection Information

Several levels of caching improve the performance of the protection
system. The first cache is the inode cache. Whenever an object's
attributes are examined, they are placed into an operating system
cache. The primary purpose of this cache is to maintain location
and object information. However, since the inode includes the re­
quired portion of the protection information, this information is
cached as well.

When a file is opened, the protection rights associated with the
opening process are maintained in an open file table. This informa­
tion is available for later rights checking. With this cache rights
checking can immediately provide rights information without send­
ing network messages to the owning node to re-determine the rights
available.

The contents of ACL objects are also cached. Each extended ACL
object is identified by a unique id (UID) [2]. This cache provides
UID to extended ACL information mapping. Whenever it is neces­
sary to consult the information stored in an ACL object, this cache
is consulted. If the cache does not contain the ACL object, a
cache replacement algorithm selects an entry to replace; the ACL
object is then read into the cache entry. Because users tend to
protect objects in a few unique ways, there is a high probability of
locating the ACL information in the cache.

Finally, there is a higher level cache used when copying objects
from volume to volume. Each ACL object must reside on the same
volume as the object it protects. As a result, if an object with an
associated ACL object is copied from one volume to another in a
mode preserving protection information, it is necessary to create a
new ACL object on the destination volume. To minimize the num­
ber of new ACL objects created a cache keeps track of source ACL
object to destination ACL object mappings. This means that if a
complete tree is copied from one volume to another, objects shar­
ing ACL objects on the source will share ACL objects on the desti­
nation.

6-14 Protection Model Extensions

Using a Copy Semantic

For copying protection information from one location to another,
we decided to use a copy semantic. What we mean by a copy se­
mantic is the following: when a user program wishes to copy protec­
tion information from one object to another, the program identifies
the source, destination, and source and destination types and calls
a protection copy procedure. Directories require the type informa­
tion, as they have three sets of protection information (i.e., the
directory protection information, the initial file information, and
the initial directory information). The copy semantic seems to be a
natural way to handle protection information. In addition, it has
the advantages of making protection copying easy and of insulating
programs from the low-level protection information. This contrasts
with another frequently used method, where a program gets the old
information and then applies it to a new object; this method re­
quires the program to allocate temporary data structures of correct
types to hold the protection information. Different calls may also
be necessary for different object types. We expect that a system
call interface to ACLs would include a call based on the copy se­
mantic.

Using the Protection System

This section provides several examples of how we use the extended
protection mechanism to implement various pw(ection policies.

Using BSD4.3 Style Protection Policy

A person using strictly BSD4.3 style protection information would
not use extended entries at all. Required information would specify
the protection information. An example of the protection infor­
mation for a file might be:

Owner: frank prwx
Group: osdev -rwx
Org: r _d [ignored]
World: -r-x

Notice that the owner has Protect rights, allowing him to change the
protection information for the file.

Protection Model Extensions 6-15

Directories would have protection information set so that the
BSD4.3 protection policy would be applied to files and directories
created within the directory. An example of initial file information:

Owner:
Group:
Org:
World:

[from process}
osdev
[from process]

[specified by process]
[specified by process]
[ignored]
[specified by process]

By the notation [from process] we mean that the corresponding
field of the creating process's SID is substituted. By the notation
[specified by process] we mean that the rights are generated by
taking the rights supplied by the process to open() or creatO, and
modified by the process's umask. If a process has an effective SID
of mark.testing.r_d, specifies rights of 775 to open() and has a
umask of 011, the resulting protection information would be:

Owner: mark prwx
Group: osdev -rw-
Org: r d [ignored] -
World: -r--

Using System V.3 Style Protection Policy

System V.3 style protection information is similar to BSD4.3 pro­
tection information. The main exception is in the initial protection
in a directory. An example of initial file protection information:

Owner:
Group:
Org:
World:

[from process]
[from process]
[from process]

[specified by process]
[specified by process]
[ignored]
[specified by process]

The notation is the same as in the previous example.

Using UNIX Protection Plus Simple Extended Entry

A UNIX user can take advantage of the extended protection system
by adding extended entries. For example, if the owner ·of a file is
frank.acct_r.finance and he wishes to allow donna.hdr.finance

6-16 Protection Model Extensions

the ability to write the file while denying others write access, he
would protect the file as follows:

Owner:
Group:
Org:
World:

frank
acct_r
finance

Extended Entries:
donna.hdr.finance

prw­
-r--
-r--

-rw-

Note that the world entry has been given no rights.

U sing More Sophisticated Protection

This example shows how one might set up initial protections on a
directory to enforce a policy that preserves information about an
object's creator while maintaining explicit protections:

Owner:
Group:
Org:
World:

[from process}
[from process]
[from process]

Extended Entries:
frank.acct r.finance
john.acct_p
acct_r
finance

[ignored}
[ignored]
[ignored]
-r--

-rw-
-rw-
-r--

prw-

When files are created in the directory, the required entries will
record the SID information of the creating process, while the ex­
tended entries control the protection rights available. . If
mary.acct_r.finance creates a file in this directory, its protection
win be:

Owner:
Group:
Org:
world:

mary
acct_r
finance

[ignored}
{ignored]
[ignored)
-r--

Extended Entries:
frank.acct_r.finance
john.acct_p -rw-
acct_r -rw-
finance -r--

prw-

Protection M~del Extensions 6-17

Conclusions and Lessons Learned

Some of the decisions made during the design and implementation
had wide-reaching effects in the operating system. For example,
we decided to make UNIX ids (the small integers associated with
UNIX user ids) part of the object attributes to speed up statO
performance. This decision implies that the system must be careful
when manipulating SIDs so that the UNIX ids are always available
for file creation. We wrote a file system scanner that takes the
unique ids associated with SID information (i.e., the person, group
or organization) and recalculates any UNIX ids that are incorrect.
This would normally only be necessary for conflicting UNIX ids
when merging networks. During implementation it was a useful tool
for tracking and repairing incorrect id information.

Reconciling the different origins of the new system was often diffi­
cult. This was partially described in the discussion of integrating
ACLs with UNIX protections. Often the Aegis way of performing
an operation conflicted with the way that the UNIX system per­
forms an operation. Sometimes it was possible to compromise and
allow both ways to work (i.e., initial protections). In other cases it
was necessary to just do something the UNIX way (see the discus­
sion of chmod in "Integrating ACLs with UNIX Protections" in this
article). Often it was not a question of which alternative was right or
wrong, but merely that the two systems had chosen to do things in a
different manner.

Compatibility with previous operating systems is a feature that
Apollo feels is important in a network operating system. Worksta­
tions are encouraged to reference data residing on other worksta­
tions. Compatibility adds a series of problems that would not occur
in a system where ties between machines are weaker. For a major
change to the operating system such as the extended protection
system changes described in this paper, compatibility is a major
concern. We would estimate that 50% of the new code associated
with the extended protection system was compatibility code.

Our protection system includes the concept of super-user. In a net­
work of workstations, this concept causes problems in the admini­
stration of workstations. It would be desirable to eliminate or mod­
ify the way super-user is implemented (a possible alternative is de­
scribed in [1]); we have left this as an issue in future work.

6-18 Protection Model Extensions

We believe that we have shown how Access Control Lists can be
viewed as an extension by UNIX programs, how they allow better
granularity over the control of access to objects in a file system, and
have provided information describing our implementation.

Protection Madej Extensions 6-19

References

[1] M. S. Hecht, M. E. Carson, C. S. Chandersekaran, et al.
1987. UNIX without the super-user. Proceedings of the
USENIX Association Summer Conference., pp. 243-256. June,
1987.

[2] Paul J. Leach, Bernard L. Stumpf, James A. Hamilton, Paul H.
Levine. 1982. UIDs as Internal Names in a Distributed File
System. Proceedings of the First Symposium on Principles of
Distributed Computing, pp. 34-41. August, 1982.

[3] Paul J. Leach, Paul H. Levine, Bryan P. Douros, James A.
Hamilton, David L. Nelson, and Bernard L. Stumpf. 1983.
The Architecture of an Integrated Local Network. IEEE Jour­
nal on Selected Areas in Communications, pp. 842-856. No­
vember, 1983.

[4] Henry M. Levy. Capability Based Computer Systems. Digital
Press, Bedford, Mass. 1984.

[5] David L. Nelson, Paul J. Leach. 1984. The Architecture and
Applications of the Apollo Domain. IEEE Computer Graphics
and Applications, pp. 58-66. April, 1984.

[6] Elliott 1. Organick. The Multics System: An Examination of Its
Structure. MIT Press, Cambridge, Mass. 1972.

[7] D. M. Ritchie, K. Thompson. The UNIX Time-Sharing Sys­
tem. Bell System Technical Journal, pp. 1905-1969. July­
August, 1978.

[8] Technical Committee on Operating Systems of the IEEE Com­
puter Society, P1003.1. Portable Operating System Interface
for Computer Environments, Draft 12. October, 1987.

----88---

6-20 Protection Model Extensions

A User Account Registration System
for a Large (Heterogeneous) UNIX Network

by

Joseph N. Pato, Elizabeth Martin, Betsy Davis

Abstract

Three problem areas arise when considering a user registration sys­
tem for a large heterogeneous distributed computing environment.
Large environments demand controls on the complexity of admini­
stration. Heterogeneity requires an examination of the notion of
identity in the network as well as the interoperabilityof software on
different hosts. Distribution raises the problems of availability, reli­
ability, and security.

Generally available UNIX environments (BSD4.3 and AT&T
SYSS.3) provide few tools for solving these problems. Account
administration is typically handled through manual editing of a sin­
gle letdpasswd file. Consistency is maintained on multiple ma­
chines by periodically copying the /etc/passwd file to each machine
in the network. For large networks with thousands of users and
machines, these mechanisms are clumsy and error prone, and they
vest too much power in a single system administrator.

RGY is a replicated user registration system built on Apollo's port­
able Network Computing System (NCS). The system consists of a
set of daemons which maintain a replicated user registration data­
base. Remote access to the user registration database is provided at
each client site through· remote procedure calls in a portable sub­
routine library that replaces the getpwent(3) and getgrent(3) C
library calls. Weakly consistent replication provides a high degree of
availability and reliability. Propagation of individual updates is per­
formed yielding an inexpensive mechanism for maintainingconsis­
tency. Updates are securely performed using authenticated inter­
faces, allowing any client site to update the database.

Copyright @ 1988 Apollo Computer, Inc. Unpublished, all rights
reserved.

User Account Registration 7-1

Introduction

In a conventional single host UNIX environment, system account
administration is managed through manipulation of the JetcJpasswd
and Jete/group files. Generally a system administrator is responsi­
ble for properly editing these files as well as performing the system
house-cleaning associated with the arrival and departure of users.
When UNIX was primarily an operating system associated with de­
partmental minicomputer environments that consisted of few (un­
der 100) users, the burden on the administrator was tolerable.

In the mid 1980's, networks of inexpensive UNIX workstations be­
came common, providing a workstation owner with a high degree of
autonomy, as well as guaranteed response time in the absence of
time-sharing. As long as each workstation or cluster of workstations
remained autonomous, the administrative burden associated with
each machine remained low. Account management could be dele­
gated to members of the user community for each workstation or
cluster.

With this autonomy, however, early workstation users also encoun­
tered isolation. Data and resource sharing became cumbersome,
relying on bulk data transfer protocols like FTP and virtual terminal
protocols like Telnet. To recover some of the cooperation found in
time-sharing systems, computer vendors introduced distributed file
systems like Apollo's Domain [6], Sun's NFS [10] and AT&T's
RFS [9], and later developed network computing environments,
like Apollo's Network Computing System (NCS) [4] and Sun's
ONC [11]. Network computing environments provide heterogene­
ous compute and resource sharing while distributed file systems pro­
vide data sharing. Distributed file systems can be considered a sub­
set of network computing environments. Therefore, for the pur­
poses of this paper, we will use the term network computing envi­
ronment to refer to either of these forms of network resource shar­
ing.

A network computing environment transforms a network of work­
stations from independent administrative jurisdictions to a federa-

7-2 User Account Registration

tion of loosely coupled systems. For access control mechanisms to
be meaningful, every system must share a single representation for
users' credentials (user names and user IDs). With independent
workstations, the assignment of user names and user IDs needs to
be unique only on each machine; in a network computing environ­
ment, this assignment must be unique across the network.

Since a user's credentials must be unique across the network, sys­
tem administrators can no longer delegate account management re­
sponsibilities to individual workstation user communities without
compromising the security of other user communities in the feder­
ated system. In contrast to isolated workstations, which can diffuse
the administrative burden of account management, a network com­
puting environment forces account management responsibilities to
be assumed by a network administration authority. This network
administrator accumulates the requirements of each workstation us­
er community and then must redistribute the account information
to each workstation in the federation.

RGY, a replicated user registration system built on Apollo's NCS,
has been developed to allow the administration of large network
environments. Our goal is to provide a network user registration
system that will work well in a network of tens of thousands of hosts
and users. To accomplish this we have developed the replicated
user registration database. ROY, to serve as the secure repository
for network system account managetnent infortnation. Access to
the ROY database is provided through NCS remote procedure call
interfaces exported by a collection of daemon processes known as
RGYDs.

Hosts that wish to participate in the federated system aCcess the
ROY database through existing getpwent(3) and getgrent(3) C li­
brary calls as well as through additional query and update primi­
tives. Each host is the final authority in granting access to its re­
sources. The ROY database allows the federated hosts to provide a
consistent view of the user community, but each host is Jree to filter
the infortnation from the ROY database to restrict access, or to
correct for differences in the local file system.

U$er Account Registration 7-3

This paper examines the following topics:

• Existing mechanisms for coping with network account ad­
ministration

• The data model and tools we developed to allow for divi­
sion of labor in maintaining the user registration database

• Providing highly available, reliable and efficient access to
the RGY database

• The mechanism to secure update access to the RGY sys­
tem

Existing Systems

Password file maintenance is a real and present problem for admin­
istrators of large UNIX installations. The 1987 USENIX Large In­
stallation System Administrators Workshop drew numerous position
papers on UNIX account management and the distribution of infor­
mation across networks. At this workshop, attendees discussed the
evolutionary processes that result in large installations and the need
to unify account information in the resulting network [3]. Other
attendees described the use of structured editors for adding entries
to the password file and the subsequent semi-automatic copying of
the file to all hosts in the network [7]. These current approaches,
centered around the existing UNIX data and administrative models,
are cumbersome in today's small networks (fewer than 100 hosts)
and hold little promise for the large (thousands of hosts) networks
of the future.

Remote access to the login account database allows replication
strategies to limit their focus to a strategic subset of the network.
Sun's Yellow Pages (YP) , part of ONe, is a simple network lookup
service that has been used to. provide remote access to password file
information. While YP did not modify the /etc/passwd data
model, it did introduce the use of remote procedure calls to re­
motely access the UNIX login account database. Outside the UNIX
environment. the Xerox Grapevine system [2] has addressed many
of these issues. Grapevine was intended to be primarily used as a
delivery mechanism for a large, dispersed computer mail system. It

7-4 User Account Registration

did not directly address the issues of maintaining a replicated user
login account database. It maintained a replicated database of mail
users which, in some instances, could also be used for user logins.
Its concern for the issues of authentication, access control, decen­
tralized administration, replication and scalability has served as in­
spiration for much of the work described in this paper.

Administrative Model

Large computing environments tend to contain a large number of
both users and machines. Frequently these consumers and re­
sources span administrative or organizational domains. To accom­
modate this type of environment we have enhanced the UNIX
identity model to include the notion of organization. In addition,
we have added access control objects to each entry in the user reg­
istration database. These changes allow mutually suspicious system
administrators to cooperatively manage a logically partitioned user
registration database. Administrative complexity is further reduced
through the use of a structured editor for database manipulations.

The RGY Data Model

The RGY user registration system maintains a database consisting of
naming information for people, groups and organizations, login ac­
count information for people, and general system properties and
policies. In the /etc/passwd file people and accounts are combined
in a single record. We, however, feel that people and accounts are
distinct objects in a user registration system: accounts represent ac­
tive roles that people can play when accessing the system, whereas
people maintain passive roles through the ownership of files, receipt
of mail, etc. that persist independent of the existence of an ac­
count.

Groups and organizations are collections of people. Groups retain
their conventional UNIX semantics and exist to allow a collection
of people to share privileges to system objects. Organizations pro­
vide another dimension for sharing. Apollo ha~ extended the UNIX
file protection model from user, group, others (rwxrwxrwx) access

User Account Registration 7-5

to user, group, organization, others access. Organizations can be
used just like groups, where a person can be a member of any num­
ber of groups. More typically, however, we use organizations as a
means of partitioning the global user community into administrative
jurisdictions, where each person belongs to a single organization.

In addition to maintaining information about the users and logical
groupings of the networked system, the RGY database contains sys­
tem policy information. Policy information consists of system con­
figured minimum password length, password content restrictions,
password expiration lifetime, absolute password expiration date,
and account lifespans. Policy is never enforced by the user registra­
tion system. It exists as a guide for clients of the system.

Naming Information

The naming database is divided into three relations, also referred to
as naming domains, that establish the existence of individual per­
sons, groups, and organizations within the registry. An entry in one
of these naming domains is called a PGOitem. A PGOitem estab­
lishes the binding between a name and a set of credentials which
consist of a unique identifier (UID) and a unix id. The unix id,
preserved for compatibility with password file entries, is a small in­
teger value used as a user id for people, a group id for groups, and
an org id for organizations. Aliases, multiple names mapping to the
same credential information, are allowed to exist.

PGOitems contain a fullname field, an owner field and miscellane­
ous properties. A PGOitem can contain a list of typed mail data.
This data consists of a type code and an uninterpreted printstring.
The printstrings may be interpreted by a system mailer and usually
define the preferred delivery mechanism or mailbox to be used.

Groups and Organization PGOitems have associated membership
lists. A membership list enumerates the people that have the rights
and privileges of the group or organization. Organization PGOitems
may also contain policy information. By establishing policy, an or-

7-6 User Account Registration

ganization may impose stricter password and account discipline
than the other organizations in the registry. The actual policy data
for an organization can be retrieved for editing, but most operations
that yield policy information return the effective policy data. To
determine an organization's effective policy, the system compares
the organization policy information with the base registry policy and
returns the most restrictive value for each field.

Login Accounts

Accounts contain a superset of the information stored in the I etd
passwd file. An account entry is divided into two portions. The
user portion of the account contains the home directory, login shell,
password, and gecos fields. The administrative portion contains
information about the creator of the account, account expiration
date and other information to indicate the validity of the account.
An account defines a subject identifier (SID). A SID is a UID
triplet which identifies the person, group, and organization that cor­
respond to the account.

UIDs [5], which are used extensively throughout the Apollo sys­
tem, are a 64-bit concatenation of the current time and host net­
work address. Unlike the unix ids which are aSSigned by the system
administrator, UIDs are generated for the PGOentry by the RGY
system and are guaranteed to be unique.

Accounts are keyed by login name, which is the concatenation of
the person name, the group name and the organization name sepa­
rated by periods (e.g., the user smith might have the account
smith.sys.r d). Login names canbe abbreviated; accounts define
the minimum abbreviation necessary for their selection. In the ex­
ample above, the account smith.sys.r_d could be accessed as
smith.sys if the associated abbreviation was person and group, or
as smith if the associated abbreviation was simply person. Each
person may have multiple accounts, either by using aliases, or by
creating accounts with different abbreviations.

User Account Registration 7-7

Decentralized Administration

Owner fields in PGOitems and registry properties allow mutually
suspicious system administrators to securely partition the admini­
stration of the RGY database. An owner field defines who can
update the corresponding record.

Access Controls

The RGY database maintains certain access controls when updating
information in the database. Only the registry owner, stored in the
registry properties, can update the registry properties or policy. The
registry properties also contain owner records for each of the nam­
ing domains. Only the owner of each naming domain can create
new PGOitems in that domain.

When a PGOitem is created, it is assigned an owner. All future
manipulations of that PGOitem can only be performed by the
owner. Group and organization membership lists can only be ma­
nipulated by the owner of the group or organization PGOitem.

Accounts can be created only by the owner of the corresponding
person PGOitem. To have an account that is affiliated with a spe­
cific group and organization, a person must first be a member of the
corresponding group and organization. Update of the administra­
tive portion of accounts is reserved to the owner of the correspond­
ing person PGOitem; updates to the user portion of an account can
only be performed by the corresponding person, or by the owner of
the corresponding person PGOitem. If a person is deleted from a
group or organization membership list, then any accounts that may
exist for that person in the group or organization are also deleted.
Group and organization membership as a pre-condition for account
existence is an invariant that is maintained by the RGY database.

7-8 User Account Registration

The Representation of Owners

An owner field is represented by a SID where any constituent field
may be replaced by a wildcard (represented by the character %).
Owner permissions are granted to anyone who can login with an
account that has a SID that matches the owner SID. If the owner
SID contains a wildcard for one of the constituent fields, then any
value for that field will match. In a free-wheeling system, all the
owner fields could be set to %. %. %, thus allowing anyone to ma­
nipulate all the data in the RGY database. Owner records of the
form %.rgy_admin.% would grant permission to anyone logged in
with an account that had rgy_admin as the group portion of its
SID.

If all owner fields in the RGY database are the same, then update
access to the RGY database is comparable to update access to the
/etc/passwd file. When the RGY database contains a large number
of people, however, it is more likely that each user community will
have the PGOitems corresponding to its members owned by an ad­
ministrator from within that user community.

Example

For the purposes of this example, we will assume that the network
and machines in the federation are secure. The only security risk
we are concerned with is the access to or corruption of data by a
person with a valid but unauthorized account.

In a large corporation, a small group of researchers are working on
a sensitive project called the manhattan project. To protect the
confidentiality of their work, they have protected their files so that
access is limited to members of the manhattan group. The re­
searchers could disconnect their machines from the corporate fed­
eration and ensure their security, but to do so would unduly disrupt
their work. How do they guarantee that no one outside the group
acquire an account with access to their data?

User Account Registration 7-9

The first step is to assign the ownership of the manhattan group
PGOitem to a member of the manhattan group (e.g., teller.man­
hattan. research). This will guarantee that only the user teller, who
is a member of the manhattan group can add or delete members
from the group. For most situations this will be sufficient, but for
truly security conscious environments more must be done.

Assume that the user fermi is a member of the manhattan group.
Further assume that the owner of fermi's person PGOitem is mali­
cious.spy. %. It would be a simple matter for malicious to change
the password on fermi's account and thus compromise the man­
hattan group's data. To be fully secure, the administrator of the
manhattan group (teller) should allow people to be members of
the group only if he is also the owner of their person PGOitems.

Structured Editing

The edrgy tool is used to manage the naming, account, and policy
information in the RGY database. It is an interactive editor that
provides users and system administrators with a structured interface
to the user registration system, at once ensuring consistency, se­
mantic correctness, and timely availability of changes.

Edrgy is aware of the semantic constraints placed upon the con­
tents of the RGY database, and of the policy that is in effect. Edrgy
uses this knowledge to assist the system administrator in performing
semantically correct operations. For example, if the system admin­
istrator attempts to add an account for a person that does not be­
long to the requested group, and the administrator has rights to
update the group, then edrgy will first add the person to the group
and then add the account. Warnings are given before an operation
is performed if that operation may have side effects. For example,
edrgy will warn that the deletion of a group will also delete any
accounts that exist with that group's permissions.

7-10 User Account Registration

System Structure

The RGY user registration system is composed of two distinct por­
tions: the database, which is an NCS replicated object, and the
client agent which provides RGY access for the host environment.

RGYD: the RGY Daemon

RGYD is the NCS server (process) that exports remote interfaces to
the RGY database. Three classes of interfaces are exported by the
RGYD: database queries and updates, replica control, and database
update propagation.

Database Operations

Database operations involve the maintenance and use of the RGY
database. RGYD exports interfaces to query and update all RGY
structures directly. In addition, the RGYDs maintain a set of inter­
faces presenting a view of the database that is equivalent to the view
presented by the getpwent(3) and getgrent(3) C library functions.
By extracting information from the corresponding PGOitem and ac­
count records RGYD constructs password file entries. Group and
org file records are constructed from the· corresponding PGOitem
and membership lists.

The RGY database is kept in virtual memory as a forest of balanced
binary trees [1] yielding efficient (O(log n) operations where n is
the number of items in each relation) query and update access.
Deleted items are marked and left in the trees until garbage collec­
tion is performed during a checkpoint. Updates are first applied to
the in memory data structures and are then atomically recorded in
a stable storage log. Checkpoints of the in-memory data structures
are taken every few hours for each relation that has been modified
since the last checkpoint. The RGYD automatically recovers the
state of the RGY database after a system crash by reloading the last

User Account Registration 7-11

checkpoint state and then re-executing each operation recorded in
the stable storage log.

Not all UNIX programs access the password file structures through
the procedural interfaces provided by the C library. To accommo­
date these programs, the RGYD maintains ASCII file versions of
the password, group, and org file. These files are recreated at each
checkpoint if the data in these views has been modified.

Replica Management

A collection of RGYD processes spread across a number of hosts
cooperate to maintain a weakly consistent replicated database. Up­
dates do not occur at all RGYDs simultaneously; instead, one of the
RGYDs is selected to serve as the master site and becomes the only
daemon that accepts database updates. The master RGYD then as­
sumes the responsibility of propagating each update to the other
cooperating (slave) RGYDs.

RGYD sites may come, go. and move around with ease. When a
slave RGYD first starts running, it locates the master RGYD through
the NCS Global Location Broker and announces its existence. If
this RGYD is a new site, then the master RGYD will initialize the
slave and record an operation to inform all other slaves of its exis­
tence. If the new RGYD is an existing site that has moved to a new
address, the master RGYD will record this change of address and
inform the other replicas. In this way each RGYD maintains a cur­
rent copy of the replica list.

A special tool. rgy_admin. is used to remotely inspect and control
each RGYD. All operations that affect the state of a RGYD are
reserved to the owner of the registry database as recorded in the
RGY properties data. With the rgy_admin tool. the registry owner
can determine if replicas are out of date. cause a replica site to be
reinitialized. select a new master site and decommission a RGYD
site. When a RGYD site receives the decommission request. it
purges its database and terminates execution.

7-12 User Account Registration

Update Propagation

In addition to managing the database and replica list, the master
RGYD also manages a propagation queue. The role of the propaga­
tion queue is analogous to the stable storage log. Every update
operation performed at the master RGYD is recorded in the propa­
gation queue for later application at the slave RGYDs. In practice,
the propagation queue and the stable storage log are the same struc­
ture. Slave RGYDs are free to truncate the stable storage log once
a checkpoint has completed, but the master RGYD must preserve
the portion of the log that remains to be propagated to each slave.
Update propagations, like all other remote operations, are accom­
plished through the use of a remote procedure calls.

A simple protocol between the master and slaves ensures that up­
dates are processed in serial order. The master RGYD applies a
monotonically increasing timestamp to each update it records.
When propagating an update, the master RGYD transmits the previ­
ous update timestamp as well as the current update timestamp.
Retransmitted updates are simply ignored by the slaves, but if the
slave detects that it is out of date with respect to the previous up-
date it requests to be reinitialized. .

The master RGYD periodically retransmits an update to a slave
which is unreachable. As the number of attempts to reach the slave
increases, the time interval between retransmissions is also in­
creased. Eventually the master will mark a slave as Out of touch and
and will re-initialize the slave when it finally becomes reachable.
Database initialization is accomplished through bulk transfer of the
database state to the target slave RGYD. Thus the master may
purge updates from its propagation queue even when some .slaves
are unreachable for long periods of time.

The RGY Client Agent

The RGY Client Agent (RCA) is divided into two components. The
most primitive level consists of the automatically generated client
side RPC stubs for the registry operations and code for binding to a
RGYD. The next, optional layer of the client agent (RGYC) pro-

User Account Registration 7-13

vides registry services in the event of network failure. This layer can
be used for translating credentials in a heterogeneous environment
or for filtering data from the network registry. The first time a RGY
operation is performed, the RCA contacts the NCS Global Location
Broker to randomly select a RGYD site for the operation. Subse­
quent operations are directed to the same RGYD until that server
becomes unavailable. To allow the client agent to remain unaware
of the replication strategy chosen by the RGYDs, we have divided
RGY operations into separate query and update interfaces. The
RCA actually maintains two bindings, one for queries and the other
for updates. With the master/slave replication currently imple­
mented by the RGYDs, only one server will register the update in­
terface at a time. An explicit binding operation is provided by the
RCA for registry editing applications. This allows the application to
force queries and updates to be delivered to the same RGYD.

The Local Registry

The local registry, maintained on each node by the RGYC, provides
a cache of user registration data in the event that a registry server is
not available. This cache of recently used accounts supports que­
ries for login and C library calls (getpwent(3), getgrent(3». In
order to prevent the cache contents from becoming stale, each re­
mote operation returns the timestamp of the last operation that may
have invalidated the cache. If the cache is out of date, the client
agent initiates a cache refresh operation.

Authentication

Ignoring well-known security holes in UNIX systems, it can be said
that access to files is vigorously protected by the operating system.
When deciding to grant access to a file, the kernel is free to believe
the identity information that it has stored for the process. In a
network computing environment, however, there is no reason for
one .host to believe that another host has not been compromised.
An application cannot even be sure that network messages truly
originated with the host listed in the message.

7-14 User Account Registration

The traditional mechanism for proving identity is the use of a secret
that is known only to the two principals, the person claiming the
identity and the guardian of the resource. In a network environ­
ment where principals reside on different hosts, encryption must be
used when exchanging the secret in order to maintain the secret.
Our model for network authentication is inspired by Needham and
Schroeder's work [8].

All RGYD update and replica administration operations that apply
access controls perform authentication as the first step in those con­
trols. To perform authentication, two encryption keys are associ­
ated with each account: a login key which is constructed from the
plain text of the account's login password, and a master key which
is generated by the RGYD when the account is created. When an
update request is received by the RGYD, it constructs a random bit
pattern and encrypts it with the requester's master key. The RGYD
then makes an RPC callback to the initial requester. This callback
is a challenge that requires the requester to decrypt the message,
perform a function on the bit pattern, and return the encrypted
result.

To successfully meet the authentication challenge posed by the
RGYD, the requesting process must possess the valid master key for
the claimed identity. The login (lbin/login) and set user id (lbin/
su) programs have been modified to acquire the valid master key.
Rather than using the standard getpwent(3) calls to retrieve the
password file record, these programs now make a direct RCA call
that retrieves the required information as well as the master key.
To protect the master key, it is never transmitted in the clear. It is
first encrypted with the login key for the account. In this way the
master key will be useful only if the login program possesses the
valid password for the account. If the password is not known, the
master key will not be decrypted properly.

The mechanism described above is used to guarantee that the RGY
database is never modified by unauthorized users. In a security
conscious environment, it is also necessary to verify that the client is
connected to a legitimate RGYD. Mechanisms to accomplish this
task are inherent in the system, but are beyond the scope of this
paper.

User Account Registration 7-15

Conclusions

The RGY system is currently used by about 100 personal worksta­
tions on the Apollo corporate internet. The RGY database contains
about 2500 users, 100 groups and 50 organizations. On an average
day about 150,000 database operations are performed spread out
over the 4 RGYDs maintaining the replicated database. While these
numbers are small compared to our design goals, we are encour­
aged to see that we are not yet close to saturating the capacity of a
single RGYD even when only one server is running.

We are currently investigating new replication algorithms that will
allow us to perform updates at any RGYD site, rather than at only
the master RGYD site. These algorithms maintain the semantic
invariants in the database, and will improve update availability in
the face of network failures.

7-16 User Account Registration

References

[1]

[2}

[3]

[4]

[5]

[6]

[7]

[8]

Alfred V. Aho, John E. Hopcroft and Jeffrey D. Ullman.
The Design and Analysis of Computer Algorithms, Ad­
dison-Wesley, Reading MA.

Andrew D. Birrell, Roy Levin, Roger M. Needham and
Michael D. Schroeder. Grapevine: an exercise in distrib­
uted computing. Communications of the ACM, Vol. 25,
No.4. April, 1982.

Pete Cottrell. Password file management at the University of
Maryland. Proceedings of the Large Installation System Ad­
ministrators Workshop, pp. 32-33'. 1987.

Terence H. Dineen, Paul J. Leach, Nathaniel W. Mishkin,
Joseph N. Pato, Geoffrey L. Wyant. The network comput­
ing architecture and system: an environment for developing
distributed applications. Proceedings of the USENIX Asso­
ciation Summer Conference. 1987.

Paul J. Leach, Bernard L.Stumpf, James A. Hamilton and
Paul H. Levine. UIDs as internal names in a distributed file
system. Proceedings of the Symposium on Principles of Dis­
tributed Computing, pp.34-41. 1982.

Paul J. Leach, Paul H. Levine, Bryan P. Douros, James A.
Hamilton, David L. Nelson and Bernard L. Stumpf. The
architecture of an integrated local network. IEEE Journal
on Selected Areas in Communications, SAL-I(5): pp.
842-857. 1983.

Evelyn C. Leeper. Login management for large installa­
tions. Proceedings of the Large Installation System Adminis­
trators Workshop, 35. April, 1987.

Roger M. Needham and Michael D. Schroeder. Using en­
cryption for authentication in large networks of computers.
Communications of the ACM, Vol. 21, No. 12, pp.
993-999. December, 1978.

User Account Registration 7-17

[91

[10]

[11]

Andrew P. Rifkin, Michael P. Forbes, Richard L. Hamilton,
Michael Sabrio, Suryakanta Shah, Kang Yueh. Remote file
sharing architectural overview. Proceedings of the USENIX
Association Summer Conference, pp. 248-259. 1986.

Sun Microsystems Inc. Networking on the Sun workstation.
Part no. 800-1324-03. 1986.

Sun Microsystems Inc. Open network computing technical
overview. DE240-0. 1987.

----88----

7-18 User Account Registration

The Network Computing Architecture and System:
An Environment for Developing

Distributed Applications
by

Terence H. Dineen, Paul J. Leach, NathanielW. Mishkin,

Joseph N. Pato, Geoffrey L. Wyant

The Network Computing Architecture (NCA) is an object-oriented
framework for developing distributed applications. The Network
Computing System (NCS) is a portable implementation of that ar­
chitecture that runs on UNIX and other systems, including Domain/
as. By adopting an object-oriented approach, we encourage appli­
cation designers to think in terms of what they want their applica­
tions to operate on, not what server they want the applications to
make calls to or how those calls are implemented. This design in­
creases robustness and flexibility in a changing environment.

Introduction

NCS currently runs under Apollo's Domain/IX [7], Domain/OS,
4.2BSD and 4.3BSD, and Sun's version of UNIX. Implementations
are currently in progress for the IBM PC and VAX/VMS. Apollo
Computer has placed NCA in the public domain.

In addition to its object orientation, some interesting features of the
system are as follows. It supplies a transport-independent remote
procedure call (RPC) facility using BSD sockets as the interface to
any datagram facility. It provides at~most-once semantics over the
datagram layer, with optimizations if an operation is declared to be
idempotent. It is built on top of a concurrent programming support
package that provides multiple threads of execution in a single ad­
dress space, although versions can be made for machines that just
have asynchronous timer interrupts.

Copyright © 1987 Apollo Computer, Inc. Unpublished, all rights
reserved.

Network Computing Architecture 8-1

The data representation supports multiple scalar data formats, so
that similar machines do not have to convert data to a canonical
form, but can instead use their common data formats. The RPC
interface definition compiler is extensible. Procedures to do the cli­
ent/server binding can be attached to data types defined in the in­
terface. Also, complex data types can be marshalled by user-sup­
plied procedures which convert such types to data types the com­
piler understands. There is a replicated global location database:
Using it, the locations of an object can be determined given its ob­
ject ID, its type, or one of its supported interfaces.

There are several motivations for NCA. Large, heterogeneous net­
works are becoming more common. Users of systems in such net­
works are often frustrated by the fact that they can't get those sys­
tems to work cooperatively. Over the last few years, advances have
been made in allowing data sharing to occur between the systems,
but not compute sharing. Tools to allow the effective use of the
aggregate compute power have not been available. The inability to
share computing resources has become even more aggravating as
more specialized processors (e.g., ones designed to run numerical
applications fast) have become more widespread. Current "technol­
ogy" obliges users of those processors to resort to FTP and Telnet.
Even in an environment of systems of relatively similar power, a
network computing architecture is called for: There are applications
that can take advantage of many systems in parallel. (Parallel
"make" is the most obvious example.) Also, replicating resources
over a number of machines increases the reliability seen by users of
the network.

It is important to understand that there is almost no "network appli­
cation" that can't be implemented without NCA/NCS. However,
the implementation is bound to be more difficult, less general, and
harder to install on a variety of systems. Further, experience has
shown that some obviously useful network applications simply don't
get written because of these problems. The existence of NCA/NCS
helps to solve these problems and as a result, expand the set of
network applications.

8-2 Network Computing Architecture

Architecture

The figure illustrates NCA's overall structure.

User Interfaces

Clients

I Application
Servers

Brokers I
Server Support Tools J

Basic Heterogenous Interconnect

NCA's Overall Structure

Heterogeneous Interconnect

The lowest level provides the basic interconnection to heterogenous
computing systems. At this layer NCA currently defines a remote
procedure call protocol (NCA/RPC) , a Network Interface Defini­
tion Language (NIDL), and a Network Data Representation
(NDR). RPC is a mechanism that allows programs to make calls to
subroutines where the caller and the subroutine run in different
processes, most commonly on different machines. The RPC ap­
proach and an implementation similar to ours is described in detail
by Birrell and Nelson [2]. NIDL is a high-level language used to
specify the interfaces to procedures that are to be invoked through
the RPC mechanism. NCS includes a portable NIDL compiler that
takes NIDL interfaces as input and produces stub procedures that,
among other things, handle data representation issues and connect
program calls to the NCS RPC runtime environment that imple­
ments the NCA/RPC protocol. The relationships among the client
(i.e. the caller of a remoted procedure), server, stubs, and NCS
runtime is shown in the following figure.

Network Computing Architecture 8-3

apparen
flo,w

~
.J~~!! ... _._':'._._._._._._. ~ Server Client I

. __ ._._._.l.J~tl,J!.!J. Procedures
I
I

call ,~ return Interface return " call ,
"

Client stub Server stub

call , , return return , t call

NCS runtime NCS runtime
network

messa ge s

Client process Server process

Relationships Among Client, Server, Stubs and NCS Runtime

Server Support Tools

Augmenting the heterogenous interconnect layer are the server sup­
port tools. These tools simplify the writing of complex applications
in a distributed environment. Currently these consist of the Data
Replication Manager (DRM) and Concurrent Programming Support
(CPS). DRM provides a weakly consistent, replicated database fa­
cility. It is useful for providing replicated objects when high avail­
ability is important and weak consistency can be tolerated. CPS
provides integrated lightweight tasking facilities. CPS allows multi­
threaded servers to be written easily.

Brokers, Clients, Servers and User Interfaces

Built on top of the server-support tools are a set of brokers. A
broker is a third party agent that facilitates transactions between
principals. In a network computing environment brokers are pri­
marily useful in determining object locations. but can also be used
for establishing secure communications (Le., authentication). asso­
ciatively selecting objects, issuing software licenses, and a variety of

8-4 Network Computing Architecture

other administrative chores not directly related to the operation of
the principals. The role of brokers is shown in the next figure.

Clients:
(Consumers)

File Access
Print
Mail
Batch

Batch Q Server

Architec~ Interfac~~ral ~

Architectural
Interfaces

(mainly RPC)

Brokers:

Naming/Locating
Registry
Aufhentication
Compute Slot

Allocation

Application
Servers:
(Producers)

File Server
Print Q Server
Mail Server
Batch Q Server

Compute
Slot Broker

~hitectural
/ ~~~~faces

The Role of Brokers in NCA

Client programs and application servers make use of the three base
layers. Application servers are the "producers" of services and cli­
ents the "consumers." Servers invoke brokers to make their exis­
tence known. Clients can invoke brokers to locate application serv­
ers and then use the underlying RPC mechanism to make use of the
services provided. The application server may be in turn. a client of
other distributed services.

From user's perspective, user interfaces tie all the pieces together.
However, user interfaces are not part of NCA and will not be dis­
cussed in this paper.

Network Computing Architecture 8-$

Unique Identifiers

An important aspect of NCA is its use of universal unique identi­
fiers (VVIDs) as the most primitive means of identifying NCA enti­
ties (e.g., objects, interfaces, operations). VVIDs are an extension
of the unique identifiers (VIDs) already used throughout Apollo's
system [6]. Both VIDs and VVIDs are fixed-length identifiers that
are guaranteed to refer to just one thing for all time. The principal
advantages of using any kind of unique identifiers over using string
names at the. lowest level of the system include: small size, ease of
embedding in data structures, location transparency, and the· ability
to layer various naming strategies on top of the primitive naming
mechanism. Also, identifiers can be generated anywhere, without
first having to contact some other agent (e.g., a special server on
the network, or a human representative of a company that hands
out identifiers).

VIDs are 64 bits long and are guaranteed to be unique across all
Apollo systems by embedding in them the node number of the sys­
tem that generated the VID and the time on that system that the
VID was generated. To make it possible to generate unique identifi­
ers on non-Apollo system we defined VVIDs to be 128 bits and
made the encoding of the identity of the system that generates the
VVID more flexible.

The remainder of this paper discusses several aspects of NCA and
NCS: NCA's object-oriented approach; NIDL; NDR; the NIDL
compiler; the Location Broker used in connecting clients with serv­
ers; and the networking model and protocol used by NCS. We con­
clude with a description of future directions we expect NCA and
NCS to follow.

The Object-Oriented Approach

NCA is object-oriented. By this we mean that it follows a paradigm
established by systems such as Smalltalk [4}, Eden [1. 5J, and
Hydra [12, 3]. The basic entity in an object-oriented system is the
object. An object is a container of state (i.e. data) that can be
accessed and modified only through a well-defined set of opera­
tions (what Smalltalk calls messages).

8-6 Network Computing Architecture

The implementation of the operations is completely hidden from
the client (i.e. caller) of the operations. Every object has some
(what Smalltalk calls a class). The implementation of a set of op­
erations is called a manager (what Smalltalk calls a set of meth­
ods). Only the manager of a type knows the internal structure of
objects of the type it manages. Sets of related operations are
grouped into interfaces. Several types may support the same inter­
face; a single type may support multiple interfaces.

For example, consider an interface called directory containing the
operations add_entry, drop_entry, and list_entries. This interface
might be supported by two types: directory_oCfiles and
print_queue. There are potentially many objects of these two
types. That there are many objects of the type directory_oCfiles
should be obvious. By saying that there are many print_queue ob­
jects we mean that a system (or a network of connected systems)
might have many print queues - say, one -for each department in a
large organization.

Motivation

The reason for using the object-oriented approach in the context of
a network architecture is that this approach lets you concentrate on
what you want done, instead of where it's going to be done and how
it's going to be done: objects are the units of distribution, abstrac­
tion, extension, reconfiguration, and reliability.

Distribution. Distribution addresses the question of where an op­
eration is performed. The answer to this question is that the opera­
tion is performed where the object resides. For example, if the
print queue lives on system A, then an attempt to add an entry to
the queue from system B must be implemented by making a remote
procedure call from system B to system A . (This implementation
f?ct is hidden from the program attempting to add the entry.)

Network Computing Architecture 8-7

Abstraction. Abstraction addresses the question of how an opera­
tion is performed. In NCA, the object's type manager knows how
the operation is performed. For example, a single program list_di­
rectory could be used to list both the contents of a file system di­
rectory and the contents of a print queue. The program simply calls
the list_entries operation. The type managers for the two types of
objects might represent their information in completely different
ways (because, say, of the different performance characteristics re­
quired). However, the list_directory program uses only the ab­
stract operation and is insulated from the details of a particular
type's implementation.

Extension. The object-oriented approach allows extension; i.e. it
specifies how the system is enhanced. In NCA, there are two kinds
of extensions allowed. The first is extension by creation of new
types. For example, users can create new types of objects that sup­
port the directory interface; programs like list_directory that are
clients of this interface simply work on objects of the new type,
without modification. The second kind of extension is extension by
creation of new interfaces. A new interface is the expression of new
functionality.

Recon/iguration. Because of partial failures, or for load balancing,
networked systems sometimes need to be reconfigured. In object­
oriented terms, this reconfiguration takes place by moving objects
to new locations. For example, if the system that was the home for
some print queue failed because of a hardware problem, the system
would be reconfigured by moving the print queue object to a new
system (and informing the network of the object's new location).

Reliability. The availability of many systems in a network should
result in increased reliability. NCA's approach is to foster increased
reliability by allowing objects to be replicated. Replication increases
the probability that least one copy of the object will be available to
users of the object. To make replication feasible, NCS provides
tools to keep multiple replicas of an object in sync.

While NCA is object-oriented and we believe that applications that
use the object-oriented capabilities of NCA will be more robust and
general than those that don't, it is easy to use NCS as a conven­
tional RPC system, ignoring its object-oriented features.

8-8 Network Computing Architecture

Network Interface Definition Language

The Network Interface Definition Language (NIDL) is the language
used in the Network Computing Architecture to describe the re­
mote interfaces called by clients and provided by servers. Interfaces
described in NIDL are checked and translated by the NIDL com­
piler.

NIDL is strictly a declarative language - it has no executable con­
structs. NIDL contains only constructs for defining the constants,
types, and operations of an interface. NIDL is more than an inter­
face definition language however. It is also a network interface defi­
nition language and, therefore, it enforces the restrictions inherent
in a distributed computing model (e.g. lack of shared memory).

NIDL Language Constructs

A NIDL interface contains an header, constant and type defini­
tions, and operation descriptions. The header provides the inter­
face identification: its UUID, name, and version number. The
UUID is the "name" by which an interface is known within NCA. It
is similiar to the program number in other RPC systems, except that
it is not centrally assigned. The interface name is a string name for
the interface which is used by the NIDL compiler in naming certain
publicly known variables. The version number is used to support
compatible enhancements of interfaces.

A standard set of programming language types is provided. Integers
(signed and unsigned) come in one, two, four, and eight byte sizes.
Single (four-byte) and double (eight-byte) precision floating~point
numbers are available. Other scalars include signed and unsigned
characters, as well as booleans and enumerations.

In addition to scalar types, NIDL provides the usual type construc­
tors: structures, unions, pointers, and arrays. Unions must be dis­
criminated. (Non-discriminated unions are not permitted. The ac­
tual data values must be known at runtime so that it can be cor­
rectly transmitted to the remote server.) Pointers, in general, are
restricted to being "top-level." That is, pointers to other pointers,
or records containing pointers are not permitted. Later, we'll see
how this restriction can be relaxed. Arrays can be fixed in size or
have their size determined at runtime.

Network Computing Architecture ·8-9

Operation declarations are the heart of a remote interface defini­
tion. These define the procedures and functions that servers imple­
ment and to which clients make calls. All operations are strongly
typed. This enables the NIDL compiler to generate the code to
correctly copy parameters to and from the packet and to do any
needed data conversions. Operation declarations can be optionally
marked to have certain semantic properties, for example whether
they are idempotent. (An idempotent procedure is one that can be
executed many times with no ill-effect.)

All operations are required to have a handle as their first parame­
ter. This parameter is similar to the implicit "self" argument of
Smalltalk-80 or the "this" argument of C++ [9]. The handle argu­
ment is used to determine what object and server "is to receive the
remote call. NIDL defines a primitive handle type named han­
dle_t. An argument of this type can be used as an operation's han­
dle parameter. Clients can obtain a handle_t by calling the NCS
runtime, providing an object UUID and network location as input
arguments. Use of more abstract kinds of handles is described be­
low.

Handle arguments can be implicit. An interface definition can de­
clare that a single global variable should be treated as the handle
argument for all operations in the interface. While this style con­
flicts with some of the goals of the object-oriented approach (e.g., it
makes it harder to make calls on different objects using the same
interface), it can be useful in cases where an existing local interface
is being converted to work remotely.

NIDL Example

The following figure is a short example of an interface described in
NIDL. The example is of an interface to a bank object that sup­
ports a single operation: deposit money into an account.

(1) Defines the UUID by which this interface is known. This the
first version of this interface. If in the future, new operations are
added, the version number should be incremented. (2) Declares
the interfaces upon which this interface is dependent. The import
statement is similiat to #include, except that the named interface is
not textually included. The contents are made available for the im;..
porter to refer to types and constants defined in that interface. This
allows factoring out a common set of types into a base interface. (3)
Defines a set of types (account and account name types) that are

8-10 Network Computing Architecture

used by the bank operations. Finally (4) defines the operation it­
self.

A variant of NIDL that looks Pascal-like (as opposed to the C-like
version of which the figure is an example) is also available. Regard­
less of the variant used as input to the NIDL compiler, the output is
the same.

[uuid(334033030000.0d.OOO.OO.87.84.00.00.00), version(l))
(1)
interface bank {

import
"nbase.imp.idl";

typedef
long int

typedef
char bank$acct_name_t(32);

(2)

(3)

void bank$deposit((4)
[in) hand 1 e_t h,
[in) bank$acct_t acct,
[in) long int amount,
[out] status_$t *status

) ;
} ;

Example Interface

Object-Oriented Binding

One drawback of the language as described so far is that all opera­
tions are required to have a primitive bandle_t as their first argu­
ment. This means clients need to embed these bandIes in their pro­
grams, and to manage the binding to servers themselves. We would
like to achieve as much local-remote transparency as possible (i.e.,
to make programs insensitive to the location of the objects upon
which they operate). Embedding primitive handles in client pro­
grams destroys much of this transparency. To relieve clients of the
need to manage these handles, we introduced the notion of object­
oriented binding.

Object-oriented binding comes into play when the first parameter to
an operation is not a bandle_t. In this case, the type is taken to
represent some more abstract, client-oriented handle. Since to ac-

Network Computing Architecture 8-11

tually make remote calls, a handle_t is required, some way is
needed to translate the abstract handle into a handle_t. The person
who creates the abstract type is thus obliged to write a procedure to
do the conversion. This procedure is assumed to have the name
type_bind (where type is the type name of the abstract handle) and
is automatically called from stubs when the remote call is made.
You can view the abstract handle as an object (in the Smalltalk
sense) which supports the bind operation.

To make this more concrete, we could reformulate the above bank
example in terms of object-oriented binding. Instead of taking a
handle _ t as its first parameter, bank$deposit could take a bank
name, of type bank$name. The NIDL compiler would generate a
call to bank$name bind to translate from a bank name to the
primitive handle_t. -This routine would probably call upon some
sort of naming server to look up the bank location. The bind rou­
tine might also choose to cache location information to make later
translations faster.

Object-oriented binding hides the details of handle binding from
the client and allows interfaces to be designed in a more abstract,
client-oriented fashion. This provides a higher level of 10cal-remote
transparency than other systems which always require the client to
manage handles or explicitly name the remote host on each call.

Marshalling Complex Types

In the section on NIDL language constructs, we stated that pointers
could not be nested. The reason is that such nesting would require
the NIDL compiler to generate code to transmit general graph
structures. However, permitting only top-level, non-nested pointers
can be a severe limitation in the design of an interface. For exam­
ple, it excludes passing tree data structures to remote procedures.

To provide an escape from this restriction, NIDL allows a type to
have an associated "transmissible" type. The transmissible type is a
type that the NIDL compiler does know how to marshall. Any type
that has an associated transmissible type must have a set of proce­
dures to convert that type to and from its transmissible type. In the
example of the binary tree, the transmissible type could be an ar­
ray. The tree$to_xmit_rep procedure would walk the tree to build
a representation of it in the array, and the tree$from_xmit_rep
procedure would reconstruct the binary tree from the array.

8-12 Network Computing Architecture

Transmissible types may be associated with any type, not just types
using nested pointers. Bitmaps are an example. It may be repre­
sented internally as a fixed size array of integers. Even though the
NIDL compiler is capable of marshalling this, it may be more effi­
cient to have it transmitted in a run-length encoded (RLE) form.
So the bitmap type could have an associated RLEBitmap type, and
a set of procedures for converting to and from the RLE form.

Network Data Representation

Communicating typed values in a heterogenous environment re­
quires a data representation protocol. A data representation proto­
col defines a mapping between typed values and byte streams. A
byte stream is a sequence of bytes indexed by nonnegative integers.
Examples of data representation protocols are Courier [13] and
XDR [10}. A data representation protocol is needed because differ­
ent machines represent data differently. For example, V AXes rep­
tesent integers with the least significant byte at the low address and
68000s represent integers with the most significant byte at the low
address. A data representation protocol defines the way data is rep­
resented so that machines with different local data representation
can communicate typed values to· each other.

NCA includes a data representation protocol called Network Data
Representation (NDR). NDR defines a set of data types and type
constructors which can be used to specify ordered sets of typed
values. NDR also defines a mapping between ordered sets of values
and their representations in messages.

Under NDR, the representation of a set of values consists of two
items: a format label and a byte stream. The format label defines
how scalar values are represented (e.g. VAX or IEEE floating
point) in the byte stream; its representation is fixed by NDR as a
data structure representable in four bytes.

NDR supports the scalar types boolean, character, signed integer.
unsigned integer. and floating point. Booleansare represented in
the byte stream with one byte; false is represented by a zero byte
and true by a non-zero byte. Characters are represented in the byte
stream with one byte; either ASCII or EBCDIC codes can be used.
Four sizes of signed and unsigned integers are defined: small. short.
long. and hyper. Small types are represented in the byte stream
with one byte. short types with two bytes, long types with four bytes,

Network Computing Architecture 8-13

and hyper types with eight bytes. Either big- or little-endian repre­
sentation can be used for integers; two's complement is assumed for
signed integers. The two sizes of floating-point type are single and
double. Single floating-point types are represented with four bytes
and double floating-point types use eight bytes. The supported
floating-point representations are IEEE, VAX, Cray, and IBM.

In addition to scalar types, NDR has a set of type constructors for
defining aggregate types. These include fixed size arrays, open ar­
rays, zero terminated strings, records, and variant records.

Fixed sized arrays have a known number of elements. Their values
are represented in the byte stream simply as a sequence of repre­
sentations of the values of the elements. Each element value is rep­
resented according to the element type of the array. Open array
types have a fixed first index value and element type but their final
index value is not known from their type. Therefore, it is necessary
to represent the value of the index of the last element in the array
immediately before the representation of the values of the array
elements.

Zero terminated strings can be viewed as a special case of open
arrays; they are open arrays of characters whose last index value is
defined by a terminating zero byte. To support this common data
type in an efficient manner, NDR represents such values with an
explicit length value followed by the characters of the string includ­
ing the terminating zero character.

Record values are represented in the byte stream by representations
of the values of their fields in the order defined by the record type.
Variant records are assumed to have an initial set of fixed fields
which includes a tag field used to discriminate among the possible
variants. Representations of the values of the fields of the selected
variant follow the representations of the values of the fixed fields of
a variant record value.

Some types may appear to be missing from NDR. NDR has no enu­
merated types, bit set types, or a pointer type constructor. The defi­
nition of a NIDL maps such types onto their representations in an
NDR byte stream. For example, NIDL maps enumerated types and
bit sets onto the NDR unsigned integer type of the appropriate size.
Typed pointer values are mapped into the NDR type which repre­
sents the type that the pointer references.

8-14 Network Computing Architecture

NOR is abstract in that it does not define how the format label and
the byte stream are represented in packets. The NIOL compiler
and the NCA/RPC protocol are users of NOR: They work together
to generate the format label and byte stream, encode the format
label in packet headers, fragment the byte stream into packet.:sized
pieces, and put the fragments in packet bodies.

The important features of NOR are its flexible representation of '
scalar values, its use of natural alignment, and its extensibility.

By using a format label to specify an interpretation of the scalars in
a byte stream NOR supports a "recipient makes it right" approach
to data conversion in a heterogenous environment. A sending proc­
ess can use its preferred encoding of scalars when constructing a
byte stream providing that it is one of the defined options. A receiv­
ing process needs to convert data representations only when the
format specified in the incoming format label differs from its own
preferred format. Thus. two compatible machines can communicate
efficiently without needing to convert to a conventional network
format and back again on each transmission. NOR defines a
broadly useful but not universal set of scalar formats. We believe
that our choices are reasonable for promoting heterogenous net­
work computing combining workstations and special purpose server
machines. On the other hand. it is important to keep the space of
possible formats to a reasonable size because each recipient needs
to convert any incoming scalar format to its own.

NOR requires that values be natual1y aligned in the byte stream.
Natural alignment means that all values of size rn are aligned at a
byte stream index which is a multiple of rn, up to some limiting
value of n; NOR choses this limit to be 3. (Scalars of size up to eight
bytes are naturally aligned.) This permits, but does not require,
implementations of NCA to align buffers for the byte stream so that
stub code can use natural operators to manipulate values in the byte
stream efficiently and without alignment faults. This also helps to
promote communication ease between different kinds of machines
in a heterogenous environment.

By its use of a format label NOR is an extensible data representa­
tion protocol. The format label could be extended to specify other
aspects of the data representation such as packing disciplines, dy­
namic typing schemes, new encodings of scalars, or new classes of
scalars.

Network Computing Architecture 8-15

The NCS NIDL Compiler and Stub Functions

NCS includes a compiler which mediates between NIDL on the one
hand and NDR and the NCS runtime on the other. The functions
of the compiler are: checking the syntax and "semantics" of inter­
face definitions written in NIDL; translating NIDL definitions into
declarations in implementation languages such as C; and generating
client and server stubs for executing the remote operations of an
interface.

The NIDL compiler is organized as a front-end component and a
back-end component. The front-end parses and checks an inter­
face definition and produces an abstract syntax tree (AST) inter­
mediate form. If the interface definition is sound, the front-end
then passes this tree to the back-end which generates implementa­
tion language include files and stub code files for the interface.

NCS's NIDL compiler is implemented for portability in C using
Yacc and Lex. It is available in source form to encourage its use
and extension in heterogeneous networked environments.

NIDL Compiler Functions

Distributed object-oriented programming imposes certain restric­
tions on the semantics of interfaces. It is part of the compiler's job
(along with the design of NIDL) to enforce these restrictions. We
illustrate the front-end's semantic checks with some examples. All
types used in a definition must be well defined. All parameters and
fields whose type is an open array require the use of a last_is attrib­
ute to give their size at call time. Every remote interface requires a
UUID. Every operation of an interface requires an implicit or ex­
plicit handle parameter to support object-oriented programming.

The second major function of the NIDL compiler is to derive files
which declare the interface's constants, types, and operations in the
languages in which client applications and servers are written. These
files are included in client and server programs which use or imple­
ment the remote operations of an interface. For the current imple­
mentation the supported languages are C and Pascal. Generating
these files is done by a fairly straightforward walk over the AST;
adding the capability to generate include files in other ALGOL-like
languages would be a simple exercise.

8-16 Network Computing Architecture

In addition to declaring the constants, types, and operations of an
interface, the derived include files declare two important statically
initialized variables defined for each interface. One is the interface
specification (ifspec) which encapsulates the identity of the inter­
face and its salient properties (number of operations, well-known
ports used, etc.). The ifspec variable is used in the binding and
registering operations of the NCS runtime. The second variable is
the server Entry Point Vector (EPV) which holds pointers to the
server side's stub routines. This EPV variable is used by a server
process when registering as a server for an interface; it is used by
the NCS runtime to dispatch incoming calls.

The third major function of the NIDL compiler is to generate files
of stub code for the operations defined in an interface. There are
two such files - one contains client side stub routines and the other
contains server side stub routines. This emitted code is in standard
C, which we use as a universal assembler to promote portability.
Each operation in an interface gives rise to a client stub routine and
a server stub routine. The following section discusses the functions
of these routines.

Stub Functions

Client stub routines are called by clients of an interface; they have
the same interface as the operation for which they stand in. Server
stub routines are called by the server side NCS runtime; their inter­
face is defined by NCS. Client stub routines call the client side NCS
runtime to perform remote calls. Server stubs call the manager's
implementation of an operation to provide the actual service. Thus,
the first function of stubs is to hide the NCS runtime from users and
implementors of remote interfaces and to create the illusion of ac­
cessing a remote procedure as though it were local.

To communicate input and output arguments and function results
between callers and called routines the stub must marshall and
unmarshall argument values into call and reply packets. This is
done in accordance with NDR and the conventions of NCS. Un­
marshalling code is also responsible for detecting and performing
necessary data conversions by comparing the incoming format label
with the local formats. Data conversion is done by a combination of
inline code and support operations in the NCS runtime.

The stubs also need to calculate the size requirements for call and
reply packets based on the dynamic size of input and output argu-

Network Computing Architecture 8-17

8-18

ments. The size information is used to determine whether or not a
pre-declared packet on the stack is large enough. If not, the stubs
need to allocate and free storage for packets. It is not the job of the
stub to break up a large packet into pieces that can be sent over the
network - the NCS runtime provides the capability of handling
arbitrarily sized packets.

Client side stubs map the operations of an interface to the operation
number used by the NCS runtime to identify operations; they also
pass options designating the desired calling semantics and the ifspec
derived from the NIDL declaration of an operation to the NCS
runtime's remote call primitive.

On the server side, the stub routines are responsible for managing
storage to be used as the server side surrogates for dynamically
sized arguments. This is necessary to support the server's illusion of
large data structures passed to it by reference.

The stubs also manage the more elaborate features of NIDL de­
scribed in section 3 above. Client stubs support automatic binding
by calling users' binding and unbinding routines when necessary.
Implicit handles are made explicit to the NCS runtime by client stub _
routines. Users' marshalling routines are invoked as necessary by
both client and server stubs as part of marshalling input and output
arguments of the appropriate types.

In summary, the stub generation function of the NIDL compiler
automates the production of a large amount of protocol code based
on a routine's interface defintion. This is important because the
code is complex enough to make its hand coding very error prone
and tedious. Hand producing this kind of code has been a major
impediment to building distributed systems in the past.

Network Computing Architecture

Location Broker

A highly available location service is a fundamental component of a
distributed system architecture. Objects representing people, re­
sources, or services are transient and mobile in a network environ­
ment. Consumers of these entities cannot rely on a priori knowl­
edge of their existence or location, but must consult a dynamic reg­
istry. When consumers rely solely on a location service for accessing
objects, it becomes essential that the location server remain avail­
able in the face of partial network failures.

The NCA Location Broker (NCA/LB) protocol is designed to pro­
vide a reliable network-wide location broker. This protocol is de­
fined by a NIDL interface and is thereby easily used by any NCAI
RPC based application.

The NCA/LB, unlike location services like Xerox SDD's Clearing­
house [8] or Berkeley's Internet Name Domain service (BIND)
[11], yields location information based on UUIDs rather than on
human readable string names. The advantages of using UUIDs were
described earlier.

Locating

An object's type manager must first advertise its location with the
Location Broker in order for that objected to locatable. A manager
advertises itself by registering its location and its willingness to sup­
port some combination of specific objects, types of objects, or inter­
faces. A manager can choose to advertise itself as a global service
available to the entire network, or limit its registration to the local
system. Managers that choose the latter form of registration do not
make themselves unavailable, but rather limit their visibility to cli­
ents that specifically probe their system for location information.

Clients find objects by querying the Location Broker for appropri­
ate registrations. A client can choose to query for a specific object,
type, interface, or any combination of these characteristics. When
operations are externally constrained to occur at a specific location,
a client can choose to query the location broker at the required
system for managers supporting the appropriate object.

Network Computing Architecture 8-19

Location Broker Organization

The Location Broker is divided into two components. The Global
Location Database is a replicated object containing the registration
information of all globally registered managers; the processes that
manage this database are called the Global Location Broker. The
NCS runtime implementation of the Global Location Broker uses
the Data Replication Manager (DRM) to maintain the database.
DRM provides a weakly consistent replicated KSAM package.
Weak consistency implies that replicas of the Global Location Data­
base object may be inconsistent at any time, but, in the absence of
updates, that all replicas will converge to a consistent state within a
finite amount of time. This form of consistency provides a high de­
gree of both read and update availability to the Global Location
Database. It is not necessary to be able to communicate with all
replicas of the object to affect a change in the registration database.
The DRM assumes the responsibility of propagating updates to the
replicas in a timely fashion.

A Local Location Broker supports managers that wish to limit
their registration to the local system. Access to these registrations if
provided in two ways. A client can directly query the Location Bro­
ker at specific node to determine the objects and managers that are
registered there. Alternately, a client can simply execute a remote
operation while supplying an incompletely bound handle (i.e., one
which specified only an object and system, not a particular server
process). Remote calls made using such a handle are delivered to
the Local Location Broker, which serves as a forwarding agent if an
appropriate manager has registered itself locally. This mechanism
obviates the need for users of the NCA to use well-known ports.

The division of the Location Broker into two distinct entities is, to a
large degree, an NCS runtime implementation decision. Logically
the Local Location Database object and the Global Location Data­
base object are a single partitioned object, and, in fact, access to
these databases is provided through a common set of operations
which select the target based on lookup keys.

8-20 Network Computing Architecture

The NCA/RPC Protocol and NCS Implementation

The NCA/RPC protocol is designed to be low cost for the common
cases and independent of the underlying network protocols on top
of which it is layered. The NCS runtime implementation of the
NCA/RPC protocol is designed to be portable.

Protocol

The NCA/RPC protocol is designed so that a simple RPC call will
result in as few network messages and have as little overhead as
possible. It is well known that existing networking facilities designed
to move long byte streams reliably (e.g., TCP/IP) are generally not
well suited to being the underlying mechanism by which RPC run­
times exchanges messages. The primary reason for this is that the
cost of setting up a connection using such facilities and the associ­
ated maintenance of that connection is quite high. Such a cost
might be acceptable if, say, a client were to make 100 calls to one
server. However, we don't want to preclude the possibility of one
client making a call to 100 servers in turn. In general, we expect the
number of calls made from a particular client to a particular server
to be relatively small. The reliable connection solution is also unac­
ceptable from the server's perspective: A popular server may need
to handle calls from hundreds of clients over a relatively short pe­
riod of time (say 1-2 minutes). The server does not want to bear
the cost of maintaining network connections to all those clients.

The well-known way of getting around the well-known problem of
using reliable network connections is to make the RPC protocol
implement exactly the reliability it needs on top of an unreliable
network service (e.g., UDP/IP). This approach has the additional
advantage that some systems (e.g. embedded microprocessors) can
not or do not support any reliable network service; however, if
they're connected to a network at all, you can be sure that they'll at
least supply an unreliable service. Further, unreliable services tend
to be more similar across protocol suites than do reliable services.
(For example, some reliable protocols might return errors immedi­
ately if the network partitions even though a virtual circuit is cur­
rently idle, while others might defer until the next time 110 is at­
temped.) This similarity means that the RPC protocol can be accu­
rately implemented in more protocol suites than if it would be possi­
ble if it assumed a reliable service.

Network Computing Architecture 8-21

All that the NCA/RPC protocol assumes is an underlying unreliable
network service. The protocol is robust in the face of lost, dupli­
cated, and long-delayed messages, messages arriving out of order,
and server crashes. When necessary, the protocol ensures that no
call is ever executed more than once. (Calls may execute zero or
one times and, in the face of network partitions or server crashes,
the client may not know which.)

The NCA/RPC protocol operates roughly as follows. The client side
sends a packet describing the call (a request packet) and waits for
a response. The server side receives and dispatches the request for
execution, and sends a packet in response that describes the results
of executing the call (the response packet). If the client doesn't
receive a response to a request within a particular amount of time,
it can inquire about the status of the request by sending a ping
packet. The server either sends back a working packet, indicating
that execution of the request is in progress, or a nocall packet,
which means that the request has been lost (or that the server has
crashed and rebooted) and the client needs to res end it. The proto­
col gets slightly more complicated if the input or output arguments
do not fit into one packet.

If a called procedure is non-idempotent, the protocol ensures that
the server executes the call at most once. To detect old (duplicate)
requests, the server keeps track of the sequence number of the
previous request for each client with which it has communicated.
However, the server considers this information to be dis card able
and it may discard it if it hasn't heard from the client in a while,
i.e., there is no permanent "connection" between the client and
server.) Thus, it is possible for a long-delayed duplicate request to
arrive after the server has discarded the information about the re­
questing client. To handle this case, the server calls back to the
client (using an idempotent remote procedure call) to ask the client
for the client's current sequence number. The server then uses the
returned sequence number to validate the request. Note then that
for calls to non-idempotent procedures (with input and output argu­
ments that fit in a single packet), a total of two message pairs will be
exchanged between client and server for the simple case. Subse­
quent calls between the same client and server will require just one
message pair. Note that the extra message pair in the first case
could conceivably be eliminated if the server were willing to hold
onto client sequence number information for long enough to ensure
that all duplicate requests had been flushed from the network. We
chose not to take this approach since any time interval we consid­
ered long enough (e.g., one minute or more) seemed too long to
oblige the server to hold the information.

8-22 Network Computing Architecture

Also, for non-idempotent procedures, the server side saves and pe­
riodically retransmits the response packet until the client side has
acknowledged receipt of the response. If the server side receives a
retransmission of the request, it resends the saved response instead
of re-executing the call. The client side acknowledges the response
either implicitly, by sending a new request, or explicitly, by sending
an acknowledgment packet. The protocol also handles the case in
which the server has executed the non-idempotent call but, because
of network partitions or a server crash, fails to send the response
packet.

If a called procedure is idempotent, the protocol makes no guaran­
tees about how many times the procedure is executed. On idem­
potent requests, the server side does not save the results of the
operation once it has sent back the response packet. In addition,
the client side is not required to acknowledge the receipt of re­
sponses to idempotent requests.

Runtime

The NCS RPC runtime is written in portable C and uses the BSD
UNIX socket abstraction. (In terms of the socket abstraction, it
uses SOCK_DGRAM-style sockets.) This abstraction is intended to
mask the details of various protocol families so that one can write
protocol-independent networking code. (A protocol family is a suite
of related protocols; e.g. TCP and UDP are part of the DoD IP
protocol family; PEP and SPP are part of the Xerox NS protocol
family.) In practice, however, the socket abstraction has to be ex­
tended in several ways to make it possible to write truly protocol-in­
dependent code. We extended the socket abstraction via a set of
operations implemented in a user-mode subroutine library; the NCS
runtime uses these extensions so that it can be truly protocol-inde­
pende.nt. Bringing up the NCS runtime on a new protocol family
should not require any changes to the NCS runtime proper. All that
should be required is to add some relatively trivial routines to the
socket abstraction extension library.

NCS is careful about creating sockets. Sockets are a fairly scarce
resource and tying lots of them up for a long period is not a good
idea. NCS keeps of small private pool of sockets. One is pulled
from the pool when a process makes a remote call. When the call
completes, the socket is returned to the pool. The pool need con­
tain only one socket for the entire process if the system supports

Network Computing Architecture 8-23

only one thread of control per process (as is the case in standard
UNIX).

The use of the socket abstraction at all could be considered to be
too much of a BSD-ism, thus reducing the portability of the run­
time. Fortunately, two factors argue against this point of view: First,
it appears that AT&T System V, Release 3 will support at least a
sufficient subset of the socket calls (layered on top of their own
networking model). Second, even if the target of a port doesn't
have anything resembling the socket interface, NCS use of the in­
terface is fairly simple and it wouldn't be too hard to implement the
BSD calls in terms of whatever the target system supplies.

Future Directions

NCA and NCS represent the first step in a complete network com­
puting environment. One of the guiding goals in the development of
NCA has been transparency. This has a number of aspects: replica­
tion, failure, concurrency, location, and name transparency.

With replication transparency all copies of an object can be consid­
ered equivalent. The user of an object cannot tell whether it con­
sists of a single copy or many. The DRM provides replication trans­
parency in the case where some short-lived inconsistencies can be
tolerated. Future versions of NCA will include support for strongly
consistent replication.

Location transparency allows users to access objects without speci­
fying where the objects are. Objects are free to be moved around
the network to adapt to changing load conditions and the availabil­
ity of new hardware. The Location Broker provides the ability to
find the location of objects prior to their first use. We would like to
be able to have objects move at any time during program execution.

Concurrency transparency supports the illusion that a given client is
the sole user of an object. NCS addresses this partially through con­
current programming support which provides a simple locking facil­
ity. In the future, we would like to address· this, and to some de­
gree, failure transparency, through the use of an object-oriented
atomic transaction facility.

8-24 Network Computing Architecture

Failure transparency, i.e., the ability of components of a distributed
system to fail and recover transparently to their users, is largely a
function of location and replication transparency. By replicating
objects, when a given replica fails another is available to takes its
place. Location transparency hides the switch from one replica to
another from the user.

Neither NCA nor NCS address the issue of name transparency at
this point. We anticipate building a general purpose name server in
a future version of NCS. In addition, we intend to address a higher­
level form of naming: In many instances, it is more convenient to
find an object by attributes rather than by a text name. An attribute
broker will provide this ability. Thus, a client will be able to query
the attribute broker for a list of "26 page/sec laser printers" rather
than managing the mapping between machine names and attributes
itself.

Most of the focus in the NCA developm~nt so far has been on
getting the basic model right. Once the object-oriented model is in
place, we feel that these higher level services will evolve naturally.
Had we started with a more traditional process-oriented model, the
level of integration and transparency we desire would be much
more difficult to achieve.

Network Computing . Architecture 8~2S

References

[1]

[2]

[3]

[4]

[5]

[6]

Guy T. Almes. Integration and distribution in the Eden sys­
tem. Technical Report 83-01-02, Department of Computer
Science, University of Washington. 1983.

Andrew D. Birrell and Bruce Jay Nelson. Implementing re­
mote procedure calls. ACM Transactions on Computer Sys­
tems, 11(1): pp. 39-59. 1984.

Ellis Cohen and David Jefferson. Protection in the Hydra
operating system. Proceedings of the Fifth Symposium on
Operating Systems Principles, pp. 141-160. ACM Special
Interest Group on Operating Systems. 1975.

Adele Goldberg and David Robson. Smalltalk-80: The Lan­
guage and its Implementation. Addison-Wesley. 1983.

Edward D. Lazowska, Henry M. Levy, Guy T. Almes,
Michael J. Fischer, Robert J. Fowler, and Stephen C. Ves­
tal. The architecture of the Eden system. In Proceedings of
the Eighth Symposium on Operating Systems Principles, pp.
148-159. ACM Special Interest Group on Operating Sys­
tems. 1981.

Paul J. Leach, Bernard L. Stumpf, James A. Hamilton and
Paul H. Levine. UIDs as Internal Names in a Distributed
File System. In Proceedings of the Symposium on Principles
of Distributed Computing, pp. 34-41. Association for Com­
puting Machinery. 1982.

(7] Paul J. Leach, Paul H. Levine, Bryan P. Douros, James A.
Hamilton, David L. Nelson, and Bernard L. Stumpf. The
architecture of an integrated local network. IEEE Journal
on Selected Areas in Communications, SAL-I(5): pp.
842-857. 1983.

8-26 Network Computing Architecture

[8J

[9J

[10J

[11 J

[12J

[13]

D. C. Oppen and Y. K. Dalal. The Clearinghouse: A decen­
tralized agent for locating named objects in a distributed en­
vironment. ACM Transactions on Office Information Sys­
tems 1(3): pp. 230-253. 1983.

Bjarne Stroustrup. The C++ Programming Language. Ad­
dison-Wesley. 1986.

Sun Microsystems. Networking on the Sun workstation. Part
no. 800-1324-03. 1986.

D. B. Terry, M. Painter, D. Riggle and S. Zhou. The
Berkeley Internet Name .Domain Server. Proceedings of the
USENIX Association Summer Conference, pp. 21-31. 1984.

W. WuIf, R. Levin, C. Pierson. Overview of the Hydra oper­
ating system development. Proceedings of the Fifth Sympo­
sium on Operating Systems Principles, pp. 122-131. ACM
Special Interest Group on Operating Systems. 1975.

Xerox Corporation. Xerox System Integration Bulletin,
OPD B018112. 1981.

----SB--~-

Network Computing Architecture 8-27

An Extensible I/O System
by

Jim Rees, Paul H. Levine, Nathaniel Mishkin, Paul J. Leach

Introduction

For years, programming environments have provided device inde­
pendent program I/O. The programmer normally codes file 110 re­
quests using a standard set of procedure calls, such as the UNIX
open, close, read, and write system calls, or language specific I/O
calls. This model enables a program written primarily to perform
I/O to simple files to also read from keyboards or IPC channels,
and to write to display windows or IPC channels without any modifi­
cation. The intent is to unburden the programmer from the neces­
sity of either binding the program to a specific target for its I/O or
enabling the program to adjust to the vagaries of different I/O tar­
gets at program run-time; that is, to make the applications program
I/O independent of target type.

While this concept has been around for a long time, the systems
that implemented the concept have generally had one major short­
coming. The only way to add a new type of I/O target to the system
was to modify the system source. In the case of UNIX operating
systems, for example, it is necessary to mOdify and rebuild the op­
erating system kernel and to have all of the software that imple­
ments the management· of the new I/O target permanently wired
into physical memory. Most schemes for adding new file types to
the UNIX kernel operate at the file system level, so that within a
given file system, all files have the same type. Further, whenever a
new type is added, various pieces of the system have to be modified
to behave correctly with respect to the new type. Because of this
sizable burden, programmers are discouraged from defining numer­
ous I/O target types.

Copyright © 1986 Apollo Computer, Inc. Unpublished, all rights
reserved.

Extensible I/O 9-1

Our goal was to create a framework in which file I/O could be truly
extensible - to allow users to define new types without modification
to the basic system. Our work consisted of building a general frame­
work for extensibility and then applying those techniques to stream
I/O. We call the framework a typed object management system;
and the associated file I/O facility Extensible Streams (ES). The
combination of these two is called the Domain Open System
Toolkit.

The system resulting from our work is novel because it:

• Supports (relatively large) typed, permanent, sharable ob­
jects in a distributed file system.

• Allows users to define new types of objects.

• Allows users to associate generic procedures (operations)
with types; the procedures are dynamically loaded into the
address space of processes when the procedure is invoked.

The Open System Toolkit allows users to extend the Domain file
system by inventing new file types and writing managers for these
types. The current implementation allows dynamic creation of new
types, and dynamic binding of typed objects to the managers which
implement their behavior. Type managers are written and debugged
as user programs and require no kernel modifications for installa­
tion. This system has been used successfully to write and debug new
device drivers, to add new types of files, and to provide remote file
system interconnects to foreign file systems.

Domain Architecture

The Domain system [3] is an architecture for networks of personal
workstations and server computers that creates an integrated dis­
tributed computing environment. A major component of this dis­
tributed system is a distributed file system [4] which consists of four
major components: the object storage system, mapped file manage­
ment, concurrency control and naming service.

The Domain distributed object storage system (OSS) provides loca­
tion transparent typed object management across a network of
loosely coupled machines. We say "object" rather than file to spe­
cifically include all of the named non-disk objects in a computing

9-2 Extensible 110

environment, such as devices (serial I/O lines, magtapes, null,
etc.), IPe facilites (sockets, etc.) and processes. While a naming
service manages a network-wide hierarchical name space, at the
OSS level objects are named by a 64-bit unique identifier (UID).
The UID consists of a timestamp and a unique node ID. This guar­
antees that the UID is unique across all Domain nodes for all time.

A 64-bit object type UID is associated with every object. This type
is used to divide the set of all objects into classes of like objects; all
of the objects in a class have common properties and must be oper­
ated upon by a single set of procedures. We use a UID (rather than
any other kind of type identifier) because a system facility supports
the unique creation of these 64-bit numbers across all Apollo prod­
ucts. In the basic Domain system there are several types, including
ASCII text, binary, directory, and record. This strong typing allows
the creator of an object to explicitly specify its intended use and
interpretation, rather than depending on the conventions and coop­
eration of other users and programs.

The Domain OSS supports a consistent set of facilites for naming,
locating, creating, deleting, and providing access control and ad­
ministration over all objects. Each object has an inode, which we
have extended to contain (among other things) the type UID ofthe
described object.

For disk-based objects OSS also provides storage containers (arrays
of pages) for uninterpreted data. A process accesses this data by
handing the kernel the object's UID and asking for it to be mapped
into its address space. The process then uses ordinary machine in­
structions to directly manipulate the contents of the object - the
single-level store (SLS) concept of Multics [6], Pilot [7], and Sys­
tem/38 [1].

Layered on top of the file system is the Streams library, a user state
library mapped into every process's address space, which provides a
traditional I/O environment for programs. The Streams library im­
plements the standard I/O interfaces and so provides equal access
to both disk and non-disk resident objects. The Domain Stream
operations form a superset of the UNIX file I/O operations, as they
include record-oriented operations and more inquiry operations
but are all based on a file descriptor returned to callers of open.
Streams is an object-oriented facility in that its behavior is deter­
mined by the type of object to which its operations are applied.
When a stream operation is invoked, Streams calls the manager
that handles operations for the type of the object being operated

Extensible I/O 9-3

on. The following figure diagrams the relationships among the vari­
ous pieces of the Domain object management system and Streams.

APPLICATIONS

Disk
File

Objects

""

Directories

Mapped file 1/0

Serial 1/0
Lines

Non-disk
File

Objects

/

Device specific 110

The relationships among the various pieces of the Domain object
management system and Streams.

9-4 Extensible 110

Typed Object Management

The fundamental concept underlying the object-oriented part of
our system is the notion that every object is strongly typed and that
for each object type there is a set of executable routines that imple­
ment a well-specified group of operations on that type. This sec­
tion describes the object typing strategy, defines operations and de­
scribes their partitioning into traits. It also explains the management
facilities necessary to associate typed objects with the code that im­
plements the operations defined for them.

UNIX file system objects do not have an explicit type tag, but do
keep a form of type information in several different places. The
mode field in a file's inode contains some bits that distinguish
among ordinary files, directories, character and block special files
(devices), and depending on the version of UNIX system, FIFOs,
sockets, textual links, and other types of file system objects. There
may also be type information coded into the major and minor de­
vice numbers to, for example, distinguish between tape drives and
disk drives. In some cases, type information is encoded in the first
few bits of the file data itself. For instance, there may be "magic
numbers" for tagging various flavors of executable (a. out) files.

In the Domain system, the type tag is a UID which is explicitly
attached to the object at the time that the object is created. This
provides the advantage of a single, common mechanism to distin­
guish among all types. The use of a UID (rather than a small inte­
ger) allows the arbitrary creation of new types without appealing to
a central authority.

The fundamental concept underlying the object-oriented part of
our system is the notion of an object type as a set of legal states
together with a collection of operations that implement the state
transitions. Operations can be viewed in two ways: as a specification
of how to invoke a transformation on the state of an object, or as
the executable code that performs the transformation. The collec­
tion of code that implements the set of operations for an object type
is known as that object type's type manager.

A trait is an ordered set of operations. It represents a kind of be­
havior that a client desires from an object. For example, the opera­
tions open, close, read and write could be a "stream-like" trait,
and the operations set speed and echo input could be part of a

Extensible 110 9-5

"tty-like" trait. An object supports a trait if its type manager imple­
ments the operations of the trait. For every trait that a type man­
ager supports, the manager provides an entry point vector (EPV) ,
that is an ordered list of pointers to the procedures that implement
the operations in the trait.

stream read

trait .

tty

trait

seek

set_speed
set erase

set kill

Entry Point Vectors

(EPVs) Implementations of the Operations

Object Type Manager

The type manager consists of the routines that implement one or
more sets of operations (traits) and the entry point vectors (EPVs)
that map the supported operations to the routines that implement
them.

The implementation of the typed object management system has
two main components: the type system and the trait system. We
use the name Trait/Types/Managers (TTM) to refer to these two
components plus the set of all type managers.

The type system is responsible for maintaining a data base contain­
ing mappings between type UID, type manager, and type name.
New types can be created at will. For convenience, there is a name
for every type, but a type UID rather than a type name is actually

9-6 Extensible I/O

attached to the file system objects. This guarantees that all types are
unique, even if two different implementors independently choose
the same name. The type system provides procedures that can be
used to create new types, associate a name with a type, and look up
type UID of a given type name. It can also find the manager for a
given type.

The role of the trait system is to bind <object, trait> pairs to type
manager EPVs. It provides the trait_$bind call for this purpose.
This call looks up the object's type UID and then asks the type
system for the corresponding type manager. Object code libraries
containing managers are not pre-linked with client object code.
Rather, the trait system is responsible for dynamically loading them
into the address space of clients as necessary. To perform this task,
the trait manager uses the type system to locate the manager object
code file. It then loads the manager into the address space of the
client. The type manager is linked as an autonomous program
whose main entry point is called when the manager is loaded. The
code at this entry point registers all supported <trait, EPV> pairs
with the trait system. Once the manager is loaded, the trait system
returns the requested EPV to its client.

The type definition for an EPV corresponding to a trait that de­
scribes operations on stacks might look like:

typedef struct {
void (*push) (uid_$t, stack_$elem_t);
stack $elem t (*pop) (uid $t) ;

} stack_$epv; - - -

The actual EPV for a type manager that supported the stack trait
would be declared as:

stack_$epv my stack epv
mYJ>ush,­
myJ'op,

} ;

where my_push and my_pop are the names of real procedures
that implement the push and pop operations:

void my push (obj, elem)
uid $t - obj;
stack $elem t elem;
{ - -

Extensible I/O 9-7

stack_$elem_t my-pop(obj)
uid $t obj;
{ -

The client uses trait_$bind to get a pointer to an EPV from the
trait system:

trait_$epv *trait_$bind(obj, trait, typuidp, statusp)

uid_$t
trait $t
uid $t
status_$t

obj; I*IN: object we want to operate on *1
trait; /* IN: trait we want to use */
typuidp; / OUT: type of object */
statusp; 1 OUT: status */

Once a client has called trait_$bind and received an EPV, it can
invoke operations on the object. For example, to call the push and
pop operations in the sample trait above:

epv = (stack $epv *) trait $bind(my obj, stack_Strait,
&type uid, &status); - -
(*(ep~->push»(my obj, an elem);
an_elem = (*(epv->poP»(my_obj) ;

The Domain system provides a set of programs for creating and
installing new types and their managers. A user who creates a new
type will also typically write a type manager for that type. The man­
ager is written as a set of subroutines. each implementing an opera­
tion for the traits that the manager supports. The programmer can
use the standard debugging tools on the type manager. The man­
ager is installed by running a program that puts the executable code
in a well-known place and registers the new manager with the type
system data base. No kernel modifications are required. and the
machine does not have to be rebooted. There is no limit on the
number of object types a single system may support since their man­
agers are only loaded when needed.

9-8 Extensible I/O

Extensible Streams

Extensible Streams is a client of TTM. ES defines three basic traits:
10, 100C, and 10 XOC. The 10 trait contains the traditional I/O
operations - get (read), put (write), seek, etc. The 10_0C trait
contains the operations open and initialize. (The 10 XOC trait is
similar to 10_ OC except that it supports extended naming, a facil­
ity that allows non-standard pathnames, described below.) ES also
defines a set of auxiliary traits containing operations that only
some type managers will choose to implement. The current set of
auxiliary traits include: SlO (operations for manipulating serial I/O
lines), SOCKET (operations corresponding to the 4.2BSD UNIX
"socket" system calls) , PAD (operations for manipulating win­
dows), and DIRECTORY (operations for reading and manipulating
directories y.

ES introduces a layer of abstraction on top of the basic operations.
This layer - called the 110 Switch - supports the notion of an
open stream and isolates the user of file system 110 from the TTM.
An open stream is created by calling the 110 Switch procedure
ios_$open which:

• Calls trait_$bind to get the 10 and IO_OC EPVs for the
object being opened.

• Calls the manager's open operation. This operation re­
turns a handle - a virtual address of a descriptor that is
meaningful only to the manager. The manager stores in
the handle whatever information it needs in order to main­
tain the semantics of an open stream (e.g., position in
stream, buffers).

• Allocates an entry in the stream table - a table of open
streams. Each entry in this table contains the EPVs for the
10 and 10_0C traits, and the handle returned by the open
operation.

• Returns the small integer - the file descriptor - that
identifies the table entry allocated in the previous step.
This file descriptor is used by the application program on
subsequent calls.

Another I/O Switch procedure, ios_$create, is similar to ios_$open
except that it creates a new object and calls the manager's initialize

Extensible 1/0 9-9

operation. In addition to returning a handle, the initialize opera­
tion stores any information it needs to in the newly-created object.

For each operation in the 10 trait, a trivial I/O Switch procedure
takes a file descriptor as its first argument, converts the descriptor
to a handle (by consulting the stream table), and calls the appropri­
ate procedure from the EPV (also obtained from the stream table).
The various forms of I/O (e.g., UNIX I/O system calls, FORTRAN
and Pascal language I/O primitives) are implemented in terms of
these I/O Switch procedures.

Extended Naming

Extended naming is a facility that allows the pathname of an ob­
ject being opened to be augmented with additional text to be inter­
preted by the Streams manager of the object to which the pathname
refers. This additional text is called the residual pathname.

If an application calls the 110 Switch's open procedure with a path­
name containing a residual, and the non-residual part of the path­
name names an object whose type manager implements the
IO_XOC trait (as opposed to the IO_OC trait), then the I/O Switch
passes the residual to the manager as one of the arguments in the
IO_XOC open operation. The manager is free to interpret the re­
sidual in any way it chooses.

Program-level I/O based on a simple system naming facility allows
an application program to pass the name of a file system object into
the open call, for the I/O Switch to locate the specified object, and
for the manager of that type of object to then do its job. For exam­
ple, the pathname lusr/fonts/c1assic refers to the object whose
name is classic, which is catalogued in the directory whose name is
fonts, which in turn is catalogued in a directory object whose name
is usr. The I/O Switch resolves the. entire pathname down into the
single target object, and passes a shorthand identifier for that object
to the manager.

The intent of extended naming is to allow the object managers
themselves to take over part of the pathname-walking responsibility
so that they can manage a collection of objects that can be distin­
guished by the remainder of the pathname. To clarify this notion,
consider the following.

9-10 Extensible I/O

The pathname /jim/test.c would normally be interpreted as a file
named test.c catalogued in the directory named jim. The name
also suggests that the file is a e language source file and that all
operations that would need to work on such a file (e.g., compiling,
printing, editing) could be requested by specifying this name.

Now let's suppose that file test.c is of type history. The actual file
system object contains the entire change history of the file, much
the same way that a sees [9] file does. Programs that do not care
about the change history can open this file and read from it. The
open and read requests are passed on by the I/O Switch to the
history type manager, and the manager can be written so that the
program always reads the latest version of the file.

Extended naming takes the concept one step further by allowing the
manger writer for the history object type to allow the specification
of additional pathname text. Where the simply specified pathname
results in the reading of data from the latest version of the file
test. c, the manager writer might wish to allow a naming syntax of
the form /jim/test.c/-l to indicate that the application wishes to
use the penultimate version of the file instead of the newest. The
110 Switch allows this additional specification to be issued at the
application program layer and passed through to the manager for
the target object.

The application passes the pathname (with the extended name) to
the I/O Switch open routine. The open routine evaluates the path­
name one pathname component at a time walking from left to right.
In the current example, jim is a directory where the name test.c is
located. test.c is discovered to be a history file (not a directory),
aIld because the original pathname still has remaining text ('-1 ')
that the I/O Switch cannot resolve, it passes that remainder to the
history object manager's IO_XOe open routine. The history man­
ager is then able to decide what text to provide to subsequent read
requests and the intended result occurs. In this case, the application
program is not affected by the apparent peculiarity of the original
pathname. The I/O Switch avoids confusion by only walking the
pathname through objects that support the directory trait and the
manager is able to get whatever information it needs to do the job it
was written to do.

Extensible 1/0 9-11

Other examples of extended names a history manager might be will­
ing to accept are:

/jim/test.c/03.02.85
/jim/test.c/original
/ jim/test. c/yesterday

Another example of the application of extended naming is a gate­
way to a non-Domain file system. For example, imagine an object
whose name is THEM and whose type is UNIX_gate. A path­
name of the form /gateways/THEM/usr/jan/test.c could be
passed by an application program to the 110 Switch. The Switch
would see that the object named gateways was a directory and
would look the name THEM up in that directory. THEM would be
found to be a UNIX_gate object, and since the Switch cannot walk
the pathname through objects that are not directories, it would call
the UNIXJate object manager's open routine. That routine is
passed the UID for the object whose name is THEM and the re­
maining pathname (/usr/jan/test.c). The UNIX_gate manager
then has the information it needs to contact a remote file service for
the data it needs to meet the demands of the requesting application
program. The protocol that the manager uses to access the remote
files is entirely up to the manager writer, and because the manager
runs in user space, it is not restricted to kernel services but can use
any service available at the user level. This scheme has been used
to build a type manager that interconnects the Domain file system
with a generic Berkeley 4.2 UNIX file system, and another that
connects to a VAX/VMS file system.

Underlying Facilities

Many facilities provided in the Domain environment made the im­
plementation of TIM and Extensible Streams possible. These fa­
cilities make it possible to write OS-like functions in user space.

The underlying virtual memory system - which allows objects to be
mapped into the virtual address space - is needed to give type
managers low-level. yet controlled, access to the raw data in ob­
jects. The virtual memory system allows more flexible access to the
address space than that allowed by sbrk(2). These calls take the
name of an object, map the object into the address space, and re­
turn a pointer to (i.e., the virtual address of) the mapped object.
The address space of a process can be characterized solely in terms

9-12 ExtensibleIlO

of what objects are mapped where. Processes are not allowed to
make memory references to parts of the address space to which no
object is mapped.

The read/write storage (RWS) facility is a flexible and efficient stor­
age allocation mechanism. It is implemented in user space in terms
of the virtual memory primitives; it maps temporary objects into the
address space and allocates storage from that part of the address
space. It allows storage to be allocated from multiple pools~ One
pool corresponds exactly to the type of storage allocated by malloc.
Another pool is similar, exceptits state is not obliterated by exec
calls. Type managers must use storage from this pool to hold per­
process state information since open streams must survive calls to
exec.

RWS also provides a global storage pool. The global pool is a place
where storage that can be viewed from all processes' address spaces
can be allocated. The allocation call returns. a pointer to the allo­
cated storage, and this pointer is valid in all processes. Type manag­
ers. must use storage from the global pool to maintain things like the
current pOSition (Le., offset from beginning-of-file) of an open
stream. If a process opens a stream to an object, forks, and then
the child does I/O to the stream it was passed. the parent sees the
position of its stream change too; Thus, position information must
be in storage accessible to both parent and child. Because type
managers run in user space, they need a user space global storage
allocater for this purpose.

The dynamic program loader allows the system to load managers as
they are needed. Managers for types that are not used by a given
process do not take up any virtual address space in that process~
The loader is implemented in user space in terms of the RWS facil­
ity (to allocate space for static data) and the mapping calls. The
pute parts of executable images are simply mapped into the address
space before execution. because the compilers produce position-in­
dependent code. In 4.2BSD. only the kernel can be dynamically
linked to; all other subroutines must be statically bound to the pro­
gram which uses them.

The eventcount [8] (Ee2) facility is the basic process synchroniza­
tion mechanism. Eventcounts are similar to semaphores:
eventcounts are associated with significant events. and processes
can advance an eventcount to notify another process that an event
has occurred. or wait ona list of eventcounts until the first event
happens.

Extensible //0 9-13

A design principle for all Domain interfaces is that for every poten­
tially blocking procedure in an interface, there is an associated
eventcount that can be obtained through the interface and that is
advanced when the blocking procedure would have unblocked.
This always allows programs to wait for multiple events (say, input
on a TTY line and arrival of a network message) simultaneously.
The 4.2BSD select(2) system call is implemented in terms of
eventcounts. However, unlike select, eventcounts can also be used
to wait on non-lIO events, such as process death.

The mutual exclusion (MUTEX) facility is a user-state library that
contains calls that allow multiple processes to synchronize their ac­
cess to shared data (Le., data in objects that are mapped into multi­
ple processes). MUTEX is implemented in terms of EC2. MUTEX
defines a lock record that consists of a lock byte and an
eventcount. Typically, applications embed a record of this type in a
data structure over which mutual exclusion must be maintained. A
MUTEX lock is set by calling mutex_$lock, which attempts to set
the lock byte (using the hardware test-and-set instruction). If it fails
to set the lock byte, it waits on the eventcount; when the wait re­
turns, mutex_$lock repeats the attempt to set the lock byte.
mutex_$unlock unlocks a MUTEX lock by clearing the lock byte
and advancing the eventcount. Type managers use shared storage
to maintain various kinds of information. To control access to this
data, managers use the MUTEX facility.

The shared file control block (SFCB) facility allows multiple proc­
esses to coordinate their access to the same object. There is various
dynamic information that processes might want to keep about an
object. For example, type managers need to maintain information
about the object's current length, whether the object is being ac­
cessed for read or write, and whether other processes should be
allowed to concurrently access the object. Since this information
must be accessed by multiple processes, it must reside in global
storage.

The first process to access the object can allocate the storage, but
how are other processes to find the virtual address of that storage?
The SFCB facility addresses this problem by maintaining a table
translating object UID into global virtual address. (The table is in
global storage at a well-known location.) The sfcb_$get call takes
an object UID and returns a pointer to a piece of global storage
(called the SFCB). If no storage was "registered" with SFCB prior
to the call, an SFCB is allocated and registered under the specified
UID; otherwise, a pointer to the existing storage associated with

9-14 Extensible 110

that UID is returned and a use count field in the storage is incre­
mented to reflect the additional "user" of the storage. sfcb_Sfree
decrements the use count and, if it reaches zero, frees the storage.

Examples

Extensible Streams allows a number of special-purpose types to be
defined. For example:

• History objects: objects that contain many logical versions,
only one of which is presented through the open stream at
a time. The residual text is used to specify a particular ver­
sion; if omitted, the most recent version is presented. Use­
ful for source control systems.

• Circular objects: objects that grow to a certain size and
then have their "oldest" data discarded when more data is
written to them. Useful for maintaining bounded log out­
put from long-running programs.

• Structured documents: objects that contain document con­
trol (e.g., font and sectioning) information but which can
be read through an open stream as if they were simple AS­
CII text. Useful for using conventional text processing
tools (e.g., UNIX grep) [10].

• Gateways to non-Domain file systems: objects that are
placeholders for entire remote file systems. The residual is
used to specify a particular file on the remote system. The
manager implements whatever network protocol it chooses
to access the remote system's data.

• Distributed, replicated data bases: objects that, for reliabil­
ity reasons, are distributed across a network of machines.
A Yellow Pages [5] manager would eliminate the need for
the ypcat command, and allow any ordinary user to access
a Yellow Pages data base without modification and without
having to bind to a special library (the type manager, in ef­
fect, is the library).

TTM can be used independently of Extensible Streams. For exam­
ple, the Domain graphics library may be converted to use TIM.
Currently, the graphics library has code for all the display hardware

Extensible JlO 9-15

types it must support. A TIM-based implementation would define
multiple types, one for each type of display hardware, a trait that
contains graphics operations (e.g., move, draw, trapezoid_fill),
and a set of managers, one per type. This approach would make it
possible for only the code necessary for a particular display hard­
ware type to be loaded into the system, and for the graphics library
to be easily extensible to new hardware types.

Experience

While the original Streams library was written with the idea of types
and type managers in mind, the actual implementation had to be
restructured substantially to take advantage of TIM. We took this
opportunity to redesign the interface to managers and the interface
presented to applications that use the Streams library.

The decision to implement the Berkeley socket calls in terms of a
trait turned out to be a good one. On a standard Berkeley UNIX
system, defining and implementing a new domain (address family)
is a fairly difficult task - it requires working inside the kernel. With
Extensible Streams, you need only create a new type and imple­
ment the SOCKET trait in the manager for that type. We have al­
ready implemented a manager for "Domain domain sockets." Cur­
rently, this domain supports only datagram-oriented sockets
(SOCK_DGRAM) because our short-term goal was merely to allow
access to specific, low-level Domain networking primitives using the
generic, high-level socket calls.

The nature of the address family space made our task a bit more
complicated. Address families are identified by small integers in a
space over which there is no central authority. As a result, one has
to simply pick an address family out of thin air and hope no one
else has picked it too. It is interesting to contrast this state of affairs
with the type UID approach we took in TIM, since the small inte­
ger address families are essentially type tags. The type UID ap­
proach does not have the problem of more· than one person picking
the same type tag. We did not have the option to change the way
address families are identified, so we used a scheme in which ad­
dress families are translated into type UIDs.

The socket creation primitive is called socket_Screate_type. This
calls takes a type UID (and a socket type) and returns.a stream to a
socket of that type. (socket_Screate_type is analogous to ios..;.$cre-

9-16 Extensible I/O

ate except that it calls the create operation in the SOCKET trait
instead of the initialize operation in the IO_OC trait.) The socket
system call converts its address family argument into a type UID by
consulting an object in the file system that contains a table translat­
ing address families into type UID. It then calls socket_$cre­
ate_type. Note that we could have simply hardcoded a "switch"
statement on address family into the implemention of socket, but
this would have meant that socket would not have been as extensi­
ble as we would like. (User-defined sockets could have been cre­
ated via socket_$create_type, but not by socket). The scheme we
implemented is less than ideal in that it requires both that the type
be created and that the address-family-to-type-UID object be up­
dated, but it was the best we could do.

One difficult problem that we have not adequately addressed is that
of expanding wildcards in an extended name. For example, using
our VMS gateway type manager, one would like to type the name:

/gateways/my_vms_sys/drao: [rees.*lmail.txt

If my_ vms_sys is a gateway object to a VMS system, and
draO: [rees. *] mail. txt is a VMS file specification, this specification
should be expanded to include files named mail. txt in all subdirec­
tories of draO: [rees]. Unfortunately, the agent doing the wildcard
expansion (typically the UNIX shell) has no knowledge of the syn­
tax of the extended part of the name, and so has no way to expand
the wildcard. We considered implementing a "wildcard trait," but
this is difficult to specify in a general way, and every program that
does wildcard expansion would have to be modified to use this trait.
Instead, we require that standard UNIX hierarchical names with!
separators be used whenever wildcards are being expanded, but we
also allow non-standard syntax (as in the example above) if there
are no wildcards.

The semantics of certain UNIX operations turned out to be fairly
obscure. For example, suppose a program sets the FAPPEND flag
(via fcntl(2)) to "true," then forks, then the child sets the flag to
"false." Is the change to the stream state seen by the parent as
well? We were frequently obliged to look at UNIX kernel source or
to write sample programs and run them on a standard UNIX system
to answer our questions. As we discuss below, we are led to believe
that the task of producing exact semantic specification is a forbid­
ding one. The various UNIX standards committees have their work
cut out for them if they intend to do a complete job.

Extensible I/O 9-17

Another interesting experience gained during the implemention of
TIM and Extensible Streams relates to the problem of documenta­
tion. The goal of Extensible Streams is to make it possible for peo­
ple who are not employees of Apollo Computer to write new type
managers without having access to Apollo source code. This means
that the specification of the semantics of the operations must be
very precise - it must completely characterize the expectations of
application programs that do I/O. The creation of this specification
turned out to be a non-trivial task.

Acknowledgments

In addition to the authors, James Hamilton, David Jabs, and Eric
Shienbrood worked on the implementation of TIM and Extensible
Streams. John Yates was involved in some of the early design work.
Elizabeth O'Connell wrote most of the documentation.

9-18 Extensible I/O

References

[1] R. E. French, R. W. Collins, L. W. Loen. System/38 Machine
Storage Management. IBM Systeml38 Technical Developments,
IBM General Systems Division. 1978.

[2] Paul J. Leach, Bernard L. Stumpf, James A. Hamilton, Paul H.
Levine. UIDs as Internal Names in a Distributed File System.
Proceedings of the 1st Symposium on Principles of Distributed
Computing, Ottawa, Canada. 1982.

[3] Paul J. Leach, Paul H. Levine, Bryan P. Douros, James A.
Hamilton, David L. Nelson, Bernard L. Stumpf. The Architec­
ture of an Integrated Local Network. IEEE Journal on Selected
Areas in Communication, SAC-1, 5. 1983.

[4] Paul J. Leach, Paul H. Levine, James A. Hamilton, Bernard L.
Stumpf. The File System of an Integrated Local Network. Pro­
ceeding§ of the ACM Computer Science Conference, New Or­
leans, LA. 1985.

[5] B. Lyon and G. Sager. Overview of the Sun Network File Sys­
tem. Sun Microsystems, Inc. 1985.

[6] E. I. Organick. The Multics System: An Examination of Its
Structure, M.LT. Press. 1972.

[7] D. D. Redell, Y. K. Dalal, T. R. Horsley, H. C. Lauer, W. C.
Lynch, P. R. McJones, H. G. Murray, S. C. Purcell. Pilot: An
Operating System for a Personal Computer. Communications of
the ACM, VoL 23. 1980.

[8] David P. Reed and Rajendra K. Kanodia. Synchronization with
Eventcounts and Sequencers. Communications of the ACM.
1979.

Extensible I/O 9-19

[9] M. J. Rochkind. The Source Code Control System. IEEE
Transactions on Software Engineering. 1975.

[10] J. Waldo. Modelling Text as a Hierarchical Object. USENIX
Conference Proceedings. 1986.

----88----

9-20 Extensible 110

Reader's Response

Please take a few minutes to send us the -information we need to revise and
improve our manuals from your point of view.

Document Title: Domain/OS Design Principles
Order No.: 014962-AOO
Date of Publication: January, 1989

What type of user are you?
__ System programmer; language
__ Applications programmer; language __________ _

__ System maintenance person
__ System Administrator

~ Manager/Professional
Technical Professional

Student
Novice
Other

How often do you use the Apollo system? ______ ------

What additional infol'mation would you like the manual to include?_

Please list any errors, omissions, or problem areas in the manual by page,
section, figure, etc .. _____,.. _____ ----_______ _

Your Name
Date

Organization

Street Address

City State
Zip

No postage necessary if mailed in the U.S.

$.1
S! I
~I
fl
~I
[I
rl

1

I
I
I
1

I
I
I
1
1

fold 1

---~

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 78 CHELMSFORD, MA 01824

POSTAGE WILL BE PAlD BY ADDRESSEE

APOLLO COMPUTER INC.
Technical Publications
P.O. Box 451
Chelmsford, MA 01824

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

1
I
1
1
1
1
1
1
1
I
1
1
1
I
1

I
1
1
I
1
I ___ L

fold 1
1
I
1
I
I
I
I
1
1
I
I
I
1
1
1
1
I
I
1
I
I
I
1

11
::f.0149b2-AOOI

	000
	001
	002
	003
	004
	005
	007
	008
	009
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	8-17
	8-18
	8-19
	8-20
	8-21
	8-22
	8-23
	8-24
	8-25
	8-26
	8-27
	9-01
	9-02
	9-03
	9-04
	9-05
	9-06
	9-07
	9-08
	9-09
	9-10
	9-11
	9-12
	9-13
	9-14
	9-15
	9-16
	9-17
	9-18
	9-19
	9-20
	replyA
	replyB
	xBack

