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ABSTRACT
Social networks, online communities, mobile devices, and instant
messaging applications generate complex, unstructured data at a
high rate, resulting in large volumes of data. This poses new chal-
lenges for data management systems that aim to ingest, store, in-
dex, and analyze such data efficiently. In response, we released the
first public version of AsterixDB, an open-source Big Data Man-
agement System (BDMS), in June of 2013. This paper describes
the storage management layer of AsterixDB, providing a detailed
description of its ingestion-oriented approach to local storage and
a set of initial measurements of its ingestion-related performance
characteristics.

In order to support high frequency insertions, AsterixDB has
wholly adopted Log-Structured Merge-trees as the storage tech-
nology for all of its index structures. We describe how the As-
terixDB software framework enables “LSM-ification” (conversion
from an in-place update, disk-based data structure to a deferred-
update, append-only data structure) of any kind of index structure
that supports certain primitive operations, enabling the index to in-
gest data efficiently. We also describe how AsterixDB ensures the
ACID properties for operations involving multiple heterogeneous
LSM-based indexes. Lastly, we highlight the challenges related to
managing the resources of a system when many LSM indexes are
used concurrently and present AsterixDB’s initial solution.

1. INTRODUCTION
Social networks, online communities, mobile devices, and in-

stant messaging applications are generating digital information at
an increasing rate. Facebook has reported that the average number
of content items shared daily as of May 2013 is 4.75 billion [13],
while Twitter users are posting around 500 million tweets daily [29].
The growth of such data poses challenges for data-management
systems to process such large amounts of data efficiently.

Traditional relational databases usually employ conventional in-
dex structures such as B+-trees due to their low read latency. How-
ever, such traditional index structures use in-place writes to perform
updates, resulting in costly random writes to disk. Today’s emerg-
ing applications often involve insert-intensive workloads for which
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the cost of random writes prohibits efficient ingestion of data. Con-
sequently, popular NoSQL systems such as [2, 4, 5, 11, 26] have
adopted Log-Structured Merge (LSM) Trees [22] as their storage
structure. LSM-trees amortize the cost of writes by batching up-
dates in memory before writing them to disk, thus avoiding random
writes. This benefit comes at the cost of sacrificing read efficiency,
but, as shown in [26], these inefficiencies can be mostly mitigated.

Furthermore, much of today’s newly generated data contains rich
data types such as timestamps and locations in addition to textual
content—especially due to the increasing adoption rate of smart
phones. If such data is to be processed in real-time, then efficient
methods for ingesting and searching the data are required. How-
ever, like the B+-tree, conventional index structures that support
rich types (e.g., the R-tree [14] for spatial data) do not scale well
for such insert-intensive workloads since they are also update-in-
place structures. Therefore, it is desirable to have a unified system
that can efficiently handle such data with rich types.

In this paper, we present the storage system implemented in the
AsterixDB BDMS (Big Data Management System) [1, 6, 8], which
is such a unified system. The AsterixDB project, initiated in 2009,
has been developing new techniques for ingesting, storing, index-
ing, and analyzing large quantities of semi-structured data and has
been recently open-sourced in beta form. AsterixDB integrates
ideas from three distinct areas, namely semi-structured data, par-
allel databases, and data-intensive computing, in order to provide a
next-generation, open-source software platform that scales by run-
ning on large, shared-nothing commodity computing clusters.

Within AsterixDB’s storage system is a general framework for
converting conventional indexes to LSM-based indexes, allowing
higher data ingestion rates. We show that converting an index with-
out a total order (e.g., R-trees) to an LSM index is non-trivial if the
resultant index is expected to have performant read and write oper-
ations. The framework acts as a coordinating wrapper for existing,
non-LSM indexes so that designing and implementing specialized
indexes from scratch can be avoided, saving development time.

We also show how to enforce the ACID properties across multi-
ple heterogeneous LSM indexes and how AsterixDB ensures atomic
update operations across a primary index and any number of sec-
ondary indexes. We also describe AsterixDB’s novel yet simple re-
covery method based on both logical logging and index-component
shadowing. This recovery scheme combines a no-steal/no-force
buffer management policy with the write-ahead-logging (WAL) pro-
tocol so that crash recovery requires only redo—and not undo—
operations. Moreover, the framework’s concurrency control scheme,
based on two-phase locking (2PL), is general enough to be applied
to any type of secondary index since locking there is not required.

Lastly, we identify some challenges of managing the memory
and disk resources of the system with a large number of LSM in-



dexes running concurrently. Most prior work in the literature re-
ports performance results of LSM trees (or systems based on them)
for individual LSM trees. Here we describe a number of impor-
tant resource-management decisions that a system with many LSM
indexes must consider in order to offer a good overall performance.

The rest of the paper is organized as follows. First, we provide
background information. Next, we describe the framework for con-
verting conventional index structures to LSM indexes, followed by
how to enforce the ACID properties across multiple heterogeneous
LSM indexes. We then discuss challenges that arise in managing
the resources of a system with a large number of LSM indexes.
Finally, we present some initial performance evaluation results of
AsterixDB focusing on the LSM-based storage system.

2. BACKGROUND
We start by describing the general idea of the LSM-tree and its

operations. We then provide an overview of the AsterixDB system,
followed by a brief discussion of other related work.

2.1 LSM-tree
The LSM-tree [22] is an ordered, persistent index structure that

supports typical operations such as insert, delete, and search. It is
optimized for frequent or high-volume updates. By first batching
updates in memory, the LSM-tree amortizes the cost of an update
by converting what would have been a disk seek into some portion
of a sequential I/O.

Entries being inserted into an LSM-tree are initially placed into
a component of the index that resides in main memory—an in-
memory component. When the space occupancy of the in-memory
component exceeds a specified threshold, entries are flushed to disk.
As entries accumulate on disk, the entries are periodically merged
together subject to a merge policy that decides when and what to
merge. In practice, two different variations of flush and merge
are used. Block-based, “rolling merges” (described in [22]) pe-
riodically migrate blocks of entries from newer components (in-
cluding the in-memory component) to older components that re-
side on disk—disk components—while maintaining a fixed num-
ber of components. On the other hand, component-based flushes
migrate an entire component’s worth of entries to disk, forming a
new disk component, such that disk components are ordered based
on their freshness, while component-based merges combine the
entries from a sequence of disk components together to form a
new disk component. Popular NoSQL systems commonly employ
the component-based variation, where in-memory and disk compo-
nents are usually called memtables and SSTables, respectively (e.g.,
in [11]). Throughout the rest of this paper, a reference to an LSM
tree implies a reference to a component-based LSM-tree. As is the
case in [22], a component is usually a B+-tree. However, it is possi-
ble to use other index structures whose operations are semantically
equivalent (e.g., Skip Lists [24]) for the in-memory component.

Disk components of an LSM-tree are immutable. Modifications
(e.g., updates and deletes) of existing entries are handled by in-
serting control entries into the in-memory component. A delete
(or “anti-matter”) entry, for instance, carries a flag marking it as
a delete, while an insert can be represented simply as the new en-
try itself. Control entries with identical keys must be reconciled
during searches and merges by either annihilating older entries in
the case of a delete, or by replacing older entries with a new en-
try in the case of an update. During merges, older deleted entries
may be safely ignored when forming a new component, effectively
removing them from the index.

Entries in an LSM-tree are scattered throughout the sequence of
components, which requires range scans to be applied to all of the

components. As entries are fetched from the components, the rec-
onciliation described above is performed. A natural design for an
LSM-tree range scan cursor that facilitates reconciliation is a heap
of sub-cursors sorted on 〈key, component number〉, where each
sub-cursor operates on a single component. This design temporally
groups entries with identical keys, easing reconciliation.

Point lookups in unique indexes can be further optimized. Given
key uniqueness in an LSM-tree, cursors can access the components
one-by-one, from newest to oldest (i.e., in component number or-
der), allowing for early termination as soon as the key is found.
Enforcing key uniqueness, however, increases the cost of an inser-
tion since an additional integrity check is now required: the in-
dex must first search for the key that is being inserted. This is
in contrast to the typical usage of LSM-trees in popular NoSQL
systems, where the semantics of insert usually mean “insert if not
exists, else update” (a.k.a. “upsert”), where primary key unique-
ness is not maintained. Throughout the rest of the paper, references
to insert will assume the semantics “insert if not exists, else er-
ror if the key exists”. As suggested in [27], a Bloom filter can be
maintained in main memory for each disk component to reduce the
chance of performing unnecessary disk I/O during point lookups,
thereby decreasing the cost of performing the integrity check and
point lookups in general.

Compared to a B+-tree, the LSM-tree offers superior write throu-
ghput at the expense of reads and scans [16, 22]. As the number
of disk components increases, search performance degrades since
more disk components must be accessed. It is therefore desirable
to keep few disk components by periodically merging multiple disk
components into fewer, larger components in order to maintain ac-
ceptable search times. We refer interested readers to [26] for a
recent study of advanced LSM merging strategies.

2.2 AsterixDB
AsterixDB is a parallel, semistructured information management

platform that provides the ability to ingest, store, index, query, and
analyze mass quantities of data. It supports use-cases ranging from
rigid, relation-like data collections, whose types are predefined and
invariant, to more flexible and complex data, where little is known
a priori and the data instances are variant and self-describing. For
this, AsterixDB has a flexible data model (ADM) that is a superset
of JSON and a query language (AQL) comparable to languages
such as Pig [21], Hive [7], and Jaql [15]. Through ADM and AQL,
AsterixDB supports native storage and indexing of data as well as
access to external data (e.g., data in HDFS). AsterixDB uses the
Hyracks [9] data-parallel platform as its runtime engine. Hyracks
sits at roughly the same level that Hadoop does in implementations
of other high-level languages such as Pig, Hive, or Jaql.

2.3 Related Work
Utilizing memory to support efficient write-heavy workloads has

also been suggested by the log-structured file system (LFS) [25].
Inspired by the LSM-tree [22], different variants of log-structured
B+-trees have been introduced in the literature and some have been
deployed commercially [2, 4, 5, 11]. The bLSM-tree [26] uses
advanced scheduling algorithms to provide predictable write per-
formance. LogBase [12] has adopted log-only storage, where the
logs are the actual data repository. The Bkd-tree [23] utilized the
kd-tree to index multi-dimensional point data to provide efficient
data ingestion for spatial workloads.

The partitioned exponential file [16] is the most closely related
work to ours. It too offers a generic data structure for write-intensive
workloads that can be customized for different types of data. The
work described here differs in three ways:



1) We provide a more general approach for converting existing
index structures to LSM-based index structures that avoids
building specialized indexes from scratch, saving develop-
ment time.

2) We show, in detail, how to enforce the ACID properties across
multiple heterogeneous LSM indexes.

3) We provide a full implementation of the work in AsterixDB
as an open-source software package.

There have been efforts to enforce the ACID properties in exist-
ing LSM-based storage systems. In many systems, the ACID prop-
erties are enforced at the granularity of a single-row operation over
a single index [12, 26]. Some systems [3, 4] support secondary
indexes with weaker consistency guarantees between the primary
data store and the secondary indexes. Our work differs in that we
show how to ensure the ACID properties when there are different
types of LSM indexes such as LSM-based R-trees and LSM-based
inverted indexes and when secondary index consistency is desired.

3. SECONDARY INDEX LSM-IFICATION
This section describes a generic framework for converting a class

of indexes (that includes conventional B+-trees, R-trees, and in-
verted indexes) with certain, basic operations into LSM-based sec-
ondary indexes. The framework provides a coordinating wrapper
that orchestrates the creation and destruction of LSM components
and the delegation of operations to the appropriate components as
needed. Using the original index’s implementation as a component,
we can avoid building specialized index structures from scratch
while enabling the advantages that an LSM index provides.

Applying the key ideas behind LSM-trees to index structures
other than B+-trees turns out to be non-trivial and must be done
carefully in order to achieve a high-write throughput. In particular,
we start by explaining why the process of reconciliation of index
entries when “LSM-ifying” indexes such as the R-tree and inverted
index is challenging.

3.1 Reconciliation Challenges
Entries in a log-structured data structure are descriptions of the

state for a particular key. Since modification operations (such as in-
serts and deletes) on a log-structured data structure always produce
a new state (entry) for a particular key, there must be a process for
determining the correct state of the key amongst the existing states.
This is called reconciliation. We define the correct state of the key
to be the most recent state since that will provide the usual seman-
tics expected of index operations.

The process of reconciliation was briefly outlined for LSM B+-
trees in Section 2.1, whereby entries corresponding to a single key
were grouped by virtue of being returned in the native, key order of
the underlying index. However, this luxury is only possible when
the underlying index return entries grouped by their key. To explore
the difficulties of reconciliation for an index lacking this grouping
property, we analyze typical operations on an LSM index.
Search and merge operations: When performing a range scan on
an LSM index, each component must be searched using the same
predicate since matching entries may be distributed across the com-
ponents. Each entry returned as the product of searching a compo-
nent must be reconciled since it may or may not be the correct state
for a particular key. Recall that in the LSM B+-tree, this recon-
ciliation is simple: in a manner reminiscent of the merge step of
merge-sort, simply collect the next entry from each sub-cursor that
has a matching key, retaining only the most recent version of the
entry and discarding the others. In general, since the entries be-
ing returned from an LSM index’s sub-cursors may not be totally

ordered (e.g., from an R-tree sub-cursor), this approach cannot be
used. One possible approach could be to perform a search for ev-
ery key returned from a sub-cursor on all newer components, but
this would be prohibitively expensive since it may incur multiple
expensive, multi-path searches in an R-tree or a multitude—one
for each token—of searches in an inverted index. Alternatively,
all entries can be returned and then sorted using any comparator
that guarantees that exactly equal values come together (e.g., byte-
based sorting).
Insert and delete operations: Since modification operations on
an LSM index produce entries in the in-memory component, it is
possible to introduce multiple states for a particular key in a single
component. The existence of multiple states in a single component
could prohibit the possibility of determining the most-recent state
unless additional information is carried in the entries. One example
of such information is a sequence number. But, if the overhead of
storing sequence numbers with each entry is to be avoided, recon-
ciliation should be performed at modification time to ensure that at
most one state per key resides in a single component. In a B+-tree
component this is simple: when modifying (e.g., deleting) an entry,
the previous version of the entry will be discovered when traversing
the tree. Unfortunately, this is not true, for example, in an R-tree
since the location of an entry being inserted is not uniquely de-
termined. One possible solution is to perform a search to find any
identical keys before each modification, but doing so can greatly re-
duce the ingestion rate of an LSM R-tree since repeated multi-path,
spatial searches will incur overhead. Furthermore, this issue is ex-
acerbated when LSM-ifying an inverted index. Keys in an inverted
index are usually 〈token, id〉 pairs. Thus, there exists a state for
every token inserted into the index. In order to remove a document
from the inverted index, the document will need to be retokenized
and a delete entry will need to be added for every token that was
produced, making both the delete operation and reconciliation dur-
ing search and merge operations exorbitantly expensive.

3.2 Efficient Reconciliation
The issue of efficiently reconciling can be viewed equivalently

as the problem of (in)validating a single entry. We can achieve this
by maintaining data and control entries separately, in two different
structures. Specifically, new incoming data entries can be batched
into the underlying in-memory index, while control entries, rep-
resenting deleted entries, are batched into an in-memory B+-tree,
called the deleted-key B+-tree. The deleted-key B+-tree is essen-
tially a delete-list that stores the primary keys of the deleted entries.
We chose to use a B+-tree, but any data structure that provides sim-
ilar operations in an efficient manner could be used.

Storing control entries separately avoids expensive multi-path
searches for control entries since only the delete-list needs to be
searched. For the inverted index, it also avoids expensive tokeniza-
tion and token control entry insertion for delete operations since
only a single entry needs to be made in the deleted-key B+-tree.

An LSM index employing this approach maintains two data struc-
tures in memory: the original index structure and the deleted-key
B+-tree. Both structures are tightly coupled and will always be
flushed to disk together, yielding disk components consisting of
the original index structure and a deleted-key B+-tree. As such, we
refer to the pair of data structures as a single component. Figure 1
shows a secondary LSM R-tree index employing the above design
alongside a secondary LSM B+-tree that does not use the above
design. We omit the use of the above design for LSM B+-trees
since the B+-tree naturally groups entries, serving as an optimiza-
tion. Each index has one in-memory component and one disk com-
ponent. Note that the deleted-key B+-trees are only used to validate



entries through point lookups. Thus, as an optimization, for every
disk instance of the deleted-key B+-tree, a Bloom filter containing
the entries of the tree is maintained in memory to reduce the need to
access pages of the deleted-key B+-tree on disk. Index operations
on this new structure are explained in Section 3.4.1.

Instance of Index I 
           (Ci-I) 

Deleted-Key B+-Tree 
           (Ci-B) 

Bloom Filter 

In-Memory Component 

On-Disk Component 

C0-I C0-I 

C0-B 

C1-I C1-I 

C1-B 

LSM B+-Tree LSM R-Tree 

<PK> 

<SK,PK> <SK,PK> 

<-,SK,PK> 

Insert <SK,PK> 
Flush 

Delete <SK,PK> 

1	
   2	
  Time 

Figure 1: The final state of insertion, flushing, then deletion
applied to a secondary LSM R-tree and a secondary LSM B+-
tree. Both indexes are storing entries of the form 〈SK ,PK 〉,
where SK is a secondary key and PK is the associated primary
key. The LSM R-tree handles deletion by inserting the primary
keys of the deleted entries in its deleted-key B+-tree, while the
LSM B+-tree handles it by inserting a control entry, denoted by
〈−,SK ,PK 〉, into its memory component.

3.3 Imposing a Linear Order
For a certain class of indexes lacking a total order, it is possible

to impose a linear order on the index entries. For example, a Z-
order curve or Hilbert curve can be used to impose a linear order
on the index entries of an R-tree. This is especially useful for bulk-
loading since the ordering can be applied during flushes and merges
of LSM components. By doing so, a hybrid approach to efficient
reconciliation becomes possible. In this hybrid strategy, incoming
inserts and deletes are still maintained in two different in-memory
data structures as explained above. However, when flushing the in-
memory component to disk, the data and control (anti-matter) en-
tries of the in-memory index structure and the deleted-key B+-tree
can be sorted based on the ordering criterion (e.g., Hilbert curve)
and merged to form a single disk component that consists of the sin-
gle, original index structure. This hybrid approach can benefit the
performance of the LSM index in many aspects. First, the sorted
mini-cursors design can now be used to search the disk components
of the index, allowing deleted entries to be ignored on the fly. Sec-
ond, since the participating disk components are already ordered
based on the sorting criteria, the merging process is simple and ef-
ficient: scan the component’s leaves and output the sorted entries
into a new disk component. Third, the newly-formed, merged com-
ponent will retain the original ordering. For the R-tree, retaining
the ordering improves the performances of searches and generally
produces a higher quality index as shown in [17].

3.4 LSM Generalization
Based on the above design, we can provide a generic framework

to “LSM-ify” the secondary indexes of a system. Let entries be
of the form e = 〈SK ,PK 〉 where SK is a secondary key and
PK is the associated primary key. The framework requires that the
following primitive operations be supported by every secondary,
non-LSM index that is to be converted into an LSM index:

1. Bulk-load: Given a stream of entries e1, . . . , em, the bulk
load operation creates a single disk component of the index.
The bulk load operation is used for two reasons: to flush an
in-memory component of the index into a new disk compo-
nent and to merge multiple disk components into a single
disk component.

2. Insert: This operation inserts a given entry e into the index.

3. Delete: The delete operation removes a given entry e from
the index.

With those primitive operations, we describe the basic operations
of the proposed general LSM index design and of the LSM B+-tree,
which are both implemented in AsterixDB.

3.4.1 General LSM Index Operations
Insert and delete operations: Since entries in the deleted-key B+-
tree refer only to disk components, inserted entries never need to
be reconciled with deleted entries upon insertion. Thus, an inser-
tion is performed by inserting an entry e = 〈SK ,PK 〉 into the
in-memory index without the need to search for control entries in
the in-memory deleted-key B+-tree. To complement this, deletes
are performed by deleting the given entry directly from the index
structure and adding a control entry e′ = 〈PK 〉 to the in-memory
deleted-key B+-tree.
Search and merge operations: When answering a search query,
all components of the LSM index must be examined. An entry
e = 〈SK ,PK 〉 is part of the result set if it satisfies two conditions:

1. SK satisfies the query predicate, and

2. There does not exist a control entry e′ = 〈PK 〉 in the deleted-
key B+-tree of a newer component than e’s component.

When merging components of an LSM index, the deleted-key
B+-trees of the participating components are also searched in the
same manner to keep deleted entries out of the merged component.

3.4.2 LSM B+-Tree Operations
Insert and delete operations: Insert operations are preceded by a
search to check if an insert entry exists with the same key. If an
insert entry already exists, an error will be thrown. Otherwise, the
entry e = 〈SK ,PK 〉 will be added to the in-memory component.
Delete, on the other hand, simply inserts an anti-matter entry e′ =
〈−,SK ,PK 〉 into the in-memory component. If the in-memory
component contains an entry that has the same key as the key being
inserted or deleted, then the existing entry is simply replaced with
the new entry (except, if the existing entry is an insert entry and the
operation to be performed is an insert, which will throw an error, as
mentioned above, to enforce primary key uniqueness).
Search and merge operations: When answering a range query,
all components of the LSM B+-tree must be examined. An entry
e = 〈SK ,PK 〉 in a component is part of the result set if it satisfies
two conditions:

1. SK satisfies the query predicate, and

2. There does not exist a more recent control entry
e′ = 〈−,SK ,PK 〉.

A point lookup query can be optimized to search components
sequentially from newest to oldest until a match is found.

Similarly, when merging multiple components of an LSM B+-
tree, the participating components are searched as in the range query
to avoid putting deleted entries into the merged component.



3.5 Indexes in AsterixDB
Data in AsterixDB is partitioned using hash-based partitioning

on the dataset’s primary key. All of the dataset’s secondary indexes
are local as in most shared-nothing parallel databases. Thus, sec-
ondary index partitions refer only to data in the local primary index
partition. AsterixDB currently supports LSM-based B+-trees, R-
trees1, inverted keyword, and inverted ngram secondary indexes.
Secondary index lookups are routed to all of a dataset’s partitions
since matching data could be in any partition. These lookups occur
in parallel and primary keys are the result of these lookups. The
resulting primary keys are then used to lookup the base data from
the primary index, sorting the keys first to access the primary in-
dex in an efficient manner. Inserting and deleting entries from a
dataset requires that each of the dataset’s indexes be mutated since
AsterixDB maintains consistency across all indexes of a dataset.
The primary index is always updated first, followed by updating
the secondary indexes, if any exist.

4. PROVIDING RECORD-LEVEL ACIDITY
AsterixDB supports record-level, ACID transactions across mul-

tiple heterogeneous LSM indexes in a dataset. Transactions be-
gin and terminate implicitly for each record inserted, deleted, or
searched while a given DML statement is being executed. This is
similar to the level of transaction support found in today’s NoSQL
stores. Since AsterixDB supports secondary indexes, the implica-
tion of this transactional guarantee is that all the secondary indexes
of a dataset are consistent with the primary index.

AsterixDB does not support multi-statement transactions, and,
in fact, a DML statement that involves multiple records can itself
involve multiple independent record-level transactions. A conse-
quence of this is that, when a DML statement attempts to insert
1000 records, it is possible that the first 800 records could end
up being committed while the remaining 200 records fail to be in-
serted. This situation could happen, for example, if a duplicate key
exception occurs as the 801st insertion is attempted. If this hap-
pens, AsterixDB will report the error as the result of the offending
DML insert statement and the application logic above will need to
take the appropriate action(s) needed to assess the resulting state
and to clean up and/or continue as appropriate.

AsterixDB utilizes a no-steal/no-force buffer management policy
and write-ahead-logging (WAL) to implement a recovery technique
that is based on LSM disk component shadowing and index-level
logical logging. During crash recovery, invalid disk components
are removed and only the committed operations from in-memory
components need to be selectively replayed. Log-based structures,
due to their shadowing nature, create immutable components that
are more amenable to replication than structures that do in-place
modifications, providing more opportunity for us to explore fault
tolerance when servers fail. Currently, we do not do anything to
handle server failures and will address this in future work.

4.1 Concurrency Considerations
AsterixDB’s concurrency control is based on two-phase locking

(2PL) and follows the latch protocols described in ARIES/KVL [19]
for the B+-tree and GiST [18] for the R-tree. Transaction locks are
only acquired on primary keys when accessing a primary index.
Locks are never acquired when accessing a secondary index, which
could lead to inconsistencies when reading entries of a secondary
1 We implemented two versions: one that keeps anti-matter entries inside the disk
R-trees (AMLSM R-tree), and another that uses a deleted-key B+-tree with every disk
component for maintaining control entries (LSM R-tree). We arbitrarily chose the
LSM R-tree to be the default spatial index in AsterixDB, but we intend to switch to the
AMLSM R-tree as a result of the performance evaluations performed for this paper.

index that are being altered concurrently. To prevent these inconsis-
tencies, secondary index lookups are always validated when fetch-
ing the corresponding records from the primary index.

Keys are only locked during insert, delete, and search operations.
Flushing an in-memory component and merging disk components
do not set locks on the entries of the components, nor do they gen-
erate log records.

4.2 Maintaining No-Steal
In a no-steal policy, uncommitted data is not allowed to be per-

sisted. As updates fill the in-memory components of LSM indexes,
memory pressure grows. This pressure must eventually be released
by flushing the in-memory component to disk. Thus, in order to
maintain the no-steal policy, AsterixDB prevents flushing an in-
memory component until all uncommitted transactions that have
modified the component are completed. Further, the system pre-
vents new transactions from entering an in-memory component that
is full until it is flushed, reset, and able to accommodate them. This
is done by maintaining a reference count on each in-memory com-
ponent that is incremented and decremented when a transaction
enters and exits a component, respectively. A transaction enters
a component before it performs an operation on the component.
Then, when the transaction is committed (e.g., a commit log record
is written), the transaction exits the component. A reference count
of zero implies that there are no active transactions in the compo-
nent, hence it is safe to flush. As an optimization, AsterixDB main-
tains two reference counts: one for write transactions and one for
read transactions. Read transactions are always permitted to enter
an in-memory component, regardless of whether the component is
full or not (except for a very brief duration when the component is
reset). Write transactions, however, continue to follow the stricter
rules that were described when using a single reference count.

4.3 Abort
AsterixDB employs index-level logical logging, i.e., a single up-

date operation in an LSM index generates a single log record. The
logical log record format for LSM operations is shown in Fig-
ure 2(b). To undo an aborted transaction, all of its log records are
read in reverse order via the previous LSN and are undone accord-
ingly. Undoing an operation involves applying the inverse opera-
tion. For example, to undo a delete, an insertion is performed (and
vis-versa). Unlike ARIES, CLRs are unnecessary during undo op-
erations since we follow a no-steal policy; there is no possibility of
partial effects in a component when aborting a transaction.

4.4 Crash Recovery
Whenever a new disk component is created, through a flush or

merge operation, a validity bit is atomically set in a metadata page
of the component to indicate that the operation has completed suc-
cessfully. During crash recovery, any disk component with an un-
set validity bit is considered invalid and removed, ensuring that the
data in the index is physically consistent.

By using a no-steal policy, only committed operations from in-
memory components are selectively replayed during crash recovery
and there is no need for an undo phase, unlike the repeating history
step in ARIES [20]. Operations’ idempotence is guaranteed by
comparing the log sequence numbers (LSNs) of log records with
an index LSN—an LSN that indicates the last operation that was
applied to the index. This concept is reminiscent of the page LSNs
used by ARIES to ensure idempotence. Each component of an in-
dex maintains a component LSN that indicates (in a similar manner
to the index LSN) the last operation that was applied to the com-



ponent. The maximum value of all component LSNs of an index is
the index LSN.

Recovery starts from a checkpoint file which indicates the LSN
of the first log record that is needed for recovery—the low water
mark. Checkpoint files are created the very first time the system is
started, after each successful run of recovery, and when the system
is shutdown, in order to reduce the time of future recovery runs.
There are two phases in a post-recovery checkpoint. The first phase
is to flush all in-memory components having redo effects to disk,
and the second phase is to create a checkpoint file that holds the
LSN where the first log record will be after recovery.

Crash recovery in AsterixDB is also two phased: an analysis
phase followed by a redo phase. The analysis phase reconstructs
committed transactions by reading log records in the forward direc-
tion starting from the log record indicated by the checkpoint LSN.
The redo phase then replays the effects of the committed transac-
tions as follows. First, log records are read in the forward direction
starting from the smallest LSN created by the committed transac-
tions. A given redo log record’s operation is performed only if
the transaction identified by the transaction ID had committed and
the LSN of the log record is greater than the index LSN of the in-
dex identified by the index ID in the log record. The first condition
guarantees the durability of committed transactions’ effects and the
second condition guarantees the idempotence of the redo operation
by not redoing an effect made to disk already.

4.5 An Example
Figure 2(a) depicts the lifecycle of inserted and deleted records.

In this example, there is a dataset with records consisting of three
fields: Id (an integer key for the primary LSM B+-tree, named
PIdx ), Loc (a two-dimensional point key for the secondary LSM
R-tree, named SIdx ), and Name . A component of PIdx is de-
noted as PCi , where PC0 represents the in-memory component
and PC1 represents the oldest disk component. A component of
SIdx consists of an R-tree and a deleted-key B+-tree, each of which
is denoted as SCi and BCi as is done for the primary index. Older
disk components have smaller values of i.

The timeline shows a sequence of five consecutive operations
and their side-effects (e.g., flush and merge), where each operation
is executed by a single transaction, starting from T1 to T5. Each
panel in Figure 2(a) represents the final states of the indexes after
the operation or side-effect is performed. For expository purposes,
we use a flush policy that flushes in-memory components when the
number of in-memory entries is two and a merge policy that merges
disk components of an index when the number of disk components
is two (other policies are described in Section 5). The size of each
log record generated from each index is a fixed 40 bytes and the log
does not contain any pre-existing log records.

The initial state of the indexes is empty before T1 is executed.
Transaction T1 inserts the first record as follows. First, to enforce
the primary key uniqueness constraint, T1 must ensure that the key
〈1〉 does not exist in the primary index by performing a search oper-
ation. If no match is found, an exclusive lock (X-lock) is acquired
on the key and an index-level logical log record is generated that
includes the index ID, operation type, entry image, etc. The log
record’s LSN is 0 since it is the first log record. Since the operation
was applied to component PC0 , the component’s LSN is set to 0
(denoted by the square bracket under the component).

Next, the entry 〈1, (10, 10), “Kim”〉 is inserted into the in-
memory component of the primary index, PC0 , followed by the
insertion of the secondary index entry 〈(10, 10), 1〉 into the in-
memory component of the secondary index, SC0 (for which no
additional locking is required), which is preceded by writing the

second log record whose LSN is 40. The LSN 40 becomes the com-
ponent LSN (recall that log records are 40 bytes long). The result is
shown in the right-hand side of panel T1. Also, the log records cre-
ated by transaction T1 in Figure 2(a) are shown in Figure 2(c). The
previous LSN of the first log record is set to -1, indicating that there
is no prior log record generated by T1. The IDs PIdx and SIdx are
the IDs of the primary and the secondary indexes, respectively.

Finally, a commit log record is written, the log buffer is flushed
to disk to enforce WAL, and all locks held by T1 (the X-lock on
key 〈1〉) are released. The two fields of the commit log record (not
shown in the figure) of T1 would be set to 〈T1, commit〉.

The second record 〈2, (20, 20), “Sam”〉 is inserted by T2 in the
same way as in T1. The initial outcome of executing T2 is shown
in the panel marked as T2-A. Since the memory budget for the
memory components of PC0 and SC0 has been exhausted, both
components are now flushed to disk, as shown in T2-B (also notice
the Bloom filter that has been created for the flushed B+-tree).

Now, a delete operation is issued by T3 to delete records with
coordinates that fall within a radius of 5 degrees from a point with
coordinates 〈22, 22〉. The delete operation is transformed to two
consecutive operations: 1) find all records satisfying the delete con-
dition and 2) delete the qualified records. In this example, Aster-
ixDB’s query optimizer will choose the R-tree as the access method
to quickly identify all qualified records. Each retrieved entry must
be validated through a primary index lookup. In AsterixDB, valida-
tion starts only after all the candidate qualified results are retrieved
from the secondary index. This barrier-style validation is used to
avoid complex solutions that would involve verifying that the en-
tries in a secondary index page are still valid when consecutively
acquiring and releasing the page’s latch during a search operation.
This validation solution is analogous to revalidation after uncon-
ditional locking in [19]. In AsterixDB, the barrier-style validation
comes for free since the qualified candidate results from any sec-
ondary index are sorted (which is a blocking operation) on primary
key before probing the primary index.

As shown in T3 of Figure 2(a), the entry 〈(20, 20), 2〉 in SC1

is going to be retrieved by the delete, followed by a primary index
lookup for key 〈2〉, where transaction T3 acquires a shared lock
(S-lock) on the primary key. Since the qualified record has been
identified, now it must be deleted as follows. First, the S-lock on
primary key 〈2〉 is upgraded to an X-lock and a log record is written
for the primary index. Then, the control entry 〈−, 2〉 is inserted into
PC0 . Notice that the control entry in the primary index includes
only the delete flag and the key without the associated payload.
After that, a log record for the secondary index is written and the
entry 〈2〉 is inserted into BC0 .

Figure 2(d) shows log records created from T3’s delete opera-
tion. Notice that although the secondary index entry is inserted into
the deleted-key B+-tree, BC0 , the index ID of the second log record
in the figure is set to SIdx ; this is because our logging method is
indeed index-level logical logging. Remembering the assumption
that log records are 40 bytes long, the previous LSN of the second
log record is 160 because the first log record of T3 is the fifth log
record overall.2 Finally, the commit log is written and flushed and
the X-lock held by T3 on 〈2〉 is released.

Next, transaction T4 inserts a record 〈2, (25, 25), “Sam”〉. Its
primary key is equal to the deleted record key in the third operation,
but the point now has different location coordinates. When the cor-
responding entry is inserted into PC0 , the control entry in PC0

is replaced by the new record as shown in the figure. In contrast,
the entry 〈25, 25, 2〉 is inserted into SC0 without deleting the entry

2 Commit log records are excluded in the LSN counting in this mock example.
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(d) Log Records of T3.

Figure 2: A running example, the log record format, and example log records.

〈2〉 from BC0 (recall that entries in BC0 only refer to disk compo-
nents). The locking and logging actions performed on behalf of T4
will be similar to previous transactions.

Finally, transaction T5 inserts a record 〈3, (30, 30), “Tom”〉 as
shown in T5-A, which triggers a flush operation as shown in T5-
B. Based on the used merge policy, the two disk components are
now merged into one as shown in T5-C. In PC3 , the old entry
〈2, (20, 20), “Sam”〉 in PC1 has been superseded by the recent
entry 〈2, (25, 25), “Sam”〉 in PC2 and PBF3 has been created for
the new disk component PC3 . Component SC3 does not have an
entry 〈20, 20, 2〉, as it was removed by the control entry in BC2 .
Lastly, component BC2 and its associated Bloom filter were re-
moved since all deleted keys were consolidated during the merge.

5. RESOURCE MANAGEMENT
In this section, we discuss the challenges of managing the mem-

ory and disk resources of a system having a large number of LSM
indexes running concurrently. We argue that such systems must ad-
dress a number of important resource-management policies in or-
der to offer good overall performance. We also outline AsterixDB’s
first cut on how to handle this complex problem.

5.1 Problem Space
As shown in Figure 3, memory in the AsterixDB system is di-

vided into three different classes:

• Working memory, which is used during query processing for
performing operations like sorts, joins, and aggregations.

• Buffer cache, which is used for buffering disk pages of LSM
components.

• In-memory component memory, which is used for buffering
in-memory components before they are flushed to disk.

Legend: Dataset Activity 

Dataset 1: Heavy reads + writes 

Dataset 2: Mild reads + writes 

Dataset 3: No writes, few reads 

Legend: Components 

Bloom Filter B+-Tree R-Tree with 
Deleted-Key B+-Tree 

Disk Disk Components* 

* Data in disk components is paged in via the buffer cache 

Memory 
In-Memory Component Memory Working Memory 

on a
zl

./ ./
Buffer Cache Memory 

⌃

Figure 3: AsterixDB memory classes.
Deciding how much memory to allocate to each class–and when–

is non-trivial and workload-dependent. This is true for non-LSM
based systems as well ([10, 28]) and is exacerbated by in-memory
components of LSM indexes. During complex analytical queries,
for example, it would be beneficial to have memory allocated to
the buffer cache for reading data from disk and to working memory
for processing the data. However, during heavy data ingestion, it
would be beneficial to allocate memory for buffering updates to the
mutable components of the LSM indexes.

In a multi-LSM system like AsterixDB, there exists the addi-
tional complexity of further subdividing the mutable LSM compo-
nent memory between each of the LSM indexes. Both the size and



rate of updates entering the LSM indexes may vary from index to
index and may vary with time. The sizing of LSM components
greatly affects the performance of the system: sizing a component
too small causes the benefit of batching to be diminished, while
sizing a component too large constrains the remaining resources
of the system, including, possibly, the size of other LSM compo-
nents. Furthermore, a system with many LSM indexes must deal
with many concurrent and potentially large I/O requests. Schedul-
ing too many I/O requests on the same disk may reduce the amount
of sequential I/O that the batching effect is supposed to provide.

Contrast this with popular NoSQL systems that do not need to
process complex queries: the only decision that needs to be made
is how much memory to give to each machine for buffering in-
memory components and, equivalently, how much memory to give
to the file system for caching disk resident data. In such a sys-
tem, there are essentially only two classes of memory: the LSM
component memory and buffer cache memory. Working memory
is non-existent since the system’s APIs do not offer the ability to
express sorts, joins, and aggregations.

5.2 Current Implementation
The first version of AsterixDB is designed with these memory

considerations in mind, but implements a simple yet configurable
approach to resource management, deferring a thorough investiga-
tion to future work. However, the current implementation is de-
scribed here for the interested reader.
Working memory: Sort, join, and aggregation buffer sizes are stat-
ically configured to a constant size per memory-needing operator.
Whenever such an operation is performed, the configured amount
of memory is allocated to be used. Operations adhere to these bud-
gets and do spilling to disk as needed in order to do so.
Buffer cache memory: Data of disk components reside in pag-
inated structures. In order to read data from a disk component,
the appropriate pages must be brought into memory. This is done
through the use of a traditional buffer cache using a clock replace-
ment policy. The size of the buffer cache is statically configured to
a constant size and is allocated at system startup.
LSM component memory: Since each of the indexes in Aster-
ixDB is LSM based, each mutation of a dataset will require up-
dating its indexes by batching the updates in memory. Therefore,
some portion of memory must be dedicated to hold the in-memory
components of each index. In AsterixDB, datasets are statically
configured with a constant amount of memory. Whenever a dataset
is accessed, it must first be activated if it is not already. When the
dataset is activated, the statically defined amount of memory is allo-
cated and split amongst each dataset’s indexes uniformly. Activat-
ing too many datasets could cause the system’s available memory
to be exhausted. AsterixDB provides an additional configuration
constant that dictates the maximum amount of memory to be used
for active datasets. In the event that this threshold is reached and a
dataset needs to be activated, the system will attempt to deactivate
another unused dataset using a least recently used (LRU) eviction
policy. This strategy is analogous to what is done with pages in the
buffer cache, except at the granularity of a dataset.

Using datasets as the granularity at which memory allocation
takes place makes the most sense for a write-intensive dataset that
sees frequent updates to all partitions. This scenario will provide
good memory utilization since writing to all partitions of a dataset
entails keeping all indexes (including secondary indexes) open and
up-to-date. However, there may exist multiple partitions of a dataset
on a particular machine in order to exploit disk-level parallelism.
Therefore, even a small (e.g., one record) write will cause an entire
dataset’s worth of memory to be reserved, even though only 1/nth

of it is required (where n is the number of local partitions) since
the write will only be routed to one partition.

In AsterixDB, a flush operation is scheduled whenever a dataset’s
memory allocation becomes occupied and all transactions that mu-
tated the exhausted memory component have been committed. Cur-
rently, AsterixDB provides three different merge policies that can
be configured per dataset: constant, prefix, and no-merge. The con-
stant policy merges disk components when the number of compo-
nents reaches some constant number k, which can be configured
by the user. While the prefix policy (the default for AsterixDB) re-
lies on component sizes and the number of components to decide
which components to merge. Specifically, it works by first trying to
identify the smallest ordered (oldest to newest) sequence of compo-
nents such that the sequence does not contain a single component
that exceeds some threshold size M and that either the sum of the
component’s sizes exceeds M or the number of components in the
sequence exceeds another threshold C. If such a sequence of com-
ponents exists, then each of the components in the sequence are
merged together to form a single component. Finally, the no-merge
policy simply never merges disk components. AsterixDB also pro-
vides a DML statement that allows compacting a dataset and all of
its indexes by merging all the disk components of the indexes.

All flush and merge operations are submitted asynchronously to
a global scheduler for that machine. The scheduler has visibility
into which devices will be read and written to by a particular I/O
operation. Thus, in theory, it has the ability to schedule these oper-
ations based on some efficient strategy. The global scheduler that
is currently implemented simply schedules all I/O requests imme-
diately, whenever they are submitted to the scheduler. We leave
exploring advanced scheduling polices for future work.

6. PRELIMINARY EVALUATION
This section shows results from an initial experimental evalua-

tion of AsterixDB’s storage engine. Section 6.1 evaluates the sys-
tem as a whole while 6.2 is a micro-benchmark that evaluates the
“LSM-ification” framework from the perspective of an R-tree.

6.1 AsterixDB’s Storage System
The following experiments demonstrate the scalability of Aster-

ixDB’s data-ingestion while varying the number of nodes in the
cluster and the number of indexes being used. We show the perfor-
mance impacts that different merge policies have for data ingestion
and queries. In addition, we show the performance of range queries
for different operating regions when using the default merge policy
of AsterixDB, namely the prefix policy.

To evaluate the performance of data ingestion, we used a feature
of AsterixDB called data feeds, which is a mechanism for having
data continuously arrive into AsterixDB from external sources and
to have that data incrementally populate a managed dataset and its
associated indexes. We mimicked an external data source, Twitter,
by synthetically generating tweets that resemble actual tweets. The
synthetically generated tweets have fields such as user, message
(the tweet itself), sending time, sender location, and other relevant
fields. The tweets are generated in the Asterix Data Model (ADM)
format with monotonically increasing 64-bit integer keys. The av-
erage size of a tweet was 1KB.

For each experiment, we used two sets of machines. The first set
of machines was used to generate the synthetic tweets which are
sent over the network to the second set of machines (the AsterixDB
cluster) for ingestion. We empirically determined the minimum
number of machines that can saturate a single-machine AsterixDB
instance, in terms of transactions per second (TPS), and then used
this number to scale the number of data-generation machines when



conducting a multi-machine AsterixDB experiment. The second
set of machines is a cluster of eight IBM machines used to host
an AsterixDB instance, each with a 4-core Xeon 2.27 GHz CPU,
12GB of main memory, and four locally attached 10,000 rpm SATA
drives. Of the available 12GB, AsterixDB is given 6GB while the
remaining free memory is locked in order to disable the OS’s file
system buffer cache. In each participating machine, we dedicated
one disk to be used by the transaction log manager for writing its
log records, while the three remaining disks are dedicated as data
storage disks. The three storage disks are used as separate parti-
tions of the tweets dataset by AsterixDB, hosting their associated
indexes. Thus, a dataset in an 8-machine AsterixDB instance is
partitioned into 24 partitions.

Currently in AsterixDB, all partitions of any one dataset and its
indexes in a machine share the same memory budget for in-memory
components (divided equally across the indexes). This implies that
when the memory component of index in a partition is declared to
be full, all memory components of the indexes for the same dataset
in that machine are also declared to be full. Therefore, multiple
consecutive flush requests are sent to the I/O scheduler for flushing
the memory components of that dataset and its indexes for all the
partitions located on the machine.

Table 1 shows the configuration parameters used throughout the
experiments in 6.1, including the threshold value(s) of each merge
policy described in Section 5. Unless specified, we used the pre-
fix merge policy and the length of each experiment is 20 minutes,
starting from an empty dataset. Finally, in all experiments, we used
two memory components per index (i.e., double buffering) to avoid
stalling ingestion during flushes.

Parameter Value
Memory given for a dataset and its indexes in a machine 1GB
Data page size 128KB
Disk buffer cache size 3GB
Bloom filter target false positive rate 1%
Memory allocated for buffering log records (log tail) 16MB
Max component size of prefix merge policy 1GB
Max component count of prefix merge policy 5
Max component count of constant merge policy 3

Table 1: Settings used throughout these experiments.

6.1.1 Scalability
Figure 4 shows the average ingestion TPS as the number of nodes

in the cluster is varied with different combinations of secondary in-
dexes. In particular, Figure 4(a) shows the TPS when ingesting
tweets into a dataset that has no secondary indexes (NoIndexes),
or has one of a single, secondary LSM B+-tree, LSM R-tree, LSM
inverted keyword, or LSM inverted ngram index (LSMB+Tree ,
LSMRTree , LSMKeyword , and LSMNGram , respectively).

As the number of nodes and offered workload increase, we ob-
serve near-linear increase in ingestion throughput. A dataset with
no secondary indexes always achieves the highest TPS for the ob-
vious reason that there is no overhead of maintaining secondary
indexes. Adding a secondary LSM B+-tree to the dataset reduces
its ingestion rate, and the reduction is higher as we add more com-
plex secondary indexes such as an LSM R-tree or an LSM inverted
index. Clearly, the LSM ngram index is the most expensive index
of the four secondary indexes since it requires gram-tokenizing all
of the strings in a tweet followed by inserting the resulting 〈token,
id〉 pairs into the index.

Figure 4(b) shows the TPS for a dataset with all of the four sup-
ported secondary indexes in AsterixDB in use. The results show
that the upper bound on TPS is determined by the least upper bound
of all of the indexes (here the LSMNGram).

Figure 4(c) shows the effect of adding additional secondary in-
dexes to a dataset in a cluster of 8 machines. When an additional
secondary LSM B+-tree is added to the dataset, ingestion through-
put dropped near-linearly due to the overhead of maintaining con-
sistency between the primary and the secondary indexes.

6.1.2 Effects of Merge Policies
This section shows how three different merge policies–prefix,

constant, and no-merge–affect ingestion throughput. In Table 2,
we report the TPS and its ratio to the prefix policy for each merge
policy. In addition, we show the average number of flush and merge
operations that were performed per partition.

Regardless of the merge policy, the average flush count per par-
tition is always proportional to the TPS. This is due to the fact that
given the same amount of data to ingest and the same in-memory
component size, a higher TPS indicates the memory component is
always filled faster, incurring more flush operations.

Using the prefix merge policy yields the highest TPS for two pri-
mary reasons. First, it avoids merging large components by ignor-
ing those that are larger than the size threshold M = 1GB. In ad-
dition, it always tries to find the smallest sequence of components,
whose total size is larger than M , to be considered for a merge.
Second, the policy avoids stacking too many small components
through the use of the predefined count threshold, C = 5. When
the policy fails to find a sequence of components based on size
consideration, it still considers merging small components when
their count exceeds C. Reducing the number of small disk com-
ponents improves the performance of both inserts (by reducing the
cost of enforcing the primary key uniqueness constraint) and search
queries. Recall that to ensure primary key uniqueness, each insert
into the primary index must be preceded by searching all compo-
nents of the index for a duplicate. Thus, as more disk components
are accumulated, the cost of maintaining uniqueness increases since
more and more components must be searched.

When the constant policy is used, we observe that the TPS is
lower than the TPS achieved by the prefix policy. This is because
the constant policy never allows the number of disk components to
exceed three, resulting in fewer large disk components after merg-
ing. Also without considering a component’s size, the constant pol-
icy will merge small components with large components, resulting
in all previously ingested data being read and written to/from disk,
so as more data is ingested, merges become more and more costly.

Merge Policy TPS TPS Ratio to Prefix Flush
Count

Merge
Count

Prefix 102,232 1.00 47 12
Constant 77,774 0.76 35 17

No-Merge 78,101 0.76 35 0

Table 2: Merge policies effect on ingestion throughput.
6.1.3 Range Query Performance

In this experiment, we ingested a total of 490GB worth of syn-
thetic tweets into a dataset with a secondary LSM B+-tree index
on a randomly generated, 32-bit integer field, where both the pri-
mary and secondary indexes are using the prefix merge policy. We
queried the dataset in three different operating regions: 1) dur-
ing ingestion, 2) post-ingestion, and 3) post-ingestion and post-
compaction, where each index’s disk components are manually
compacted (merged) to form a single component per index. The ex-
periment starts by ingesting 420GB worth of tweets. Then, during
ingestion, random range queries are submitted sequentially to As-
terixDB. Once data ingestion ended (490GB worth of tweets were
ingested), 2000 random range queries were submitted sequentially.
The dataset was then compacted so that every index has exactly one
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Figure 4: Data-ingestion throughput when varying number of nodes and using different types of secondary indexes.

disk component. After compaction, another 2000 random range
queries were submitted sequentially. All queries had range predi-
cates on the secondary key. Thus, the secondary index is always
searched first, followed by probing the primary index for every en-
try returned from the secondary index. In addition, the queries were
generated randomly such that the result sets have an equal proba-
bility to have a cardinality of 10, 100, 1000, or 10000 records.

Table 3 shows the results of this experiment. Out of all three
operating regions, querying the dataset while it is ingesting data
produces the slowest response time for the obvious reason that the
system resources (CPU and disk) are being contended for by both
inserts and queries. We also observed that the performance of the
queries is worse when there is an ongoing merge, as merges are
both CPU and I/O intensive operations.

Avg. Result
Cardinality

Avg. Response
Time While

Ingesting

Avg. Response
Time After
Ingestion

Avg. Response
Time After
Compaction

10 1023 139 138
100 1185 191 184

1000 2846 634 500
10000 11647 3747 3381

Table 3: Range query performance (in milliseconds).

Once ingestion is over, the query performance improved by a
large margin due to reduced resource contention. On the other
hand, surprisingly, the performance of queries after the final com-
paction improved by only a small margin. The reason for the com-
parable performance is two fold. First, before probing a primary
index, the entries are sorted based on the primary key; therefore,
good cache locality is achieved when accessing the primary index,
mitigating the negative effects of having more disk components.
Second, each primary index probe is a point lookup that makes use
of the Bloom filters on the primary-index disk components, greatly
reducing the chance of unnecessary I/O.

Finally, for all operating regions, there is a considerable over-
head for small range queries, which is caused by the Hyracks job
initialization. For each request, a new job is created and executed.
As job creation includes the translation and optimization of an AQL
program and execution includes the distribution and start of the job
on all cluster nodes, this overhead can be significant for small job-
s/queries. We tried an AQL query that does not touch persistent
data to estimate this overhead. AsterixDB took an average of 43ms
to execute our “no-op” query. We plan on fixing this next.

6.2 LSM-ification Framework
Next we show the detailed performance characteristics of a sec-

ondary index implemented using the “LSM-ification” framework.
We compare an LSM R-tree (LSMRTree), an AMLSM R-tree
(AMLSMRTree), and a conventional R-tree [14] (RTree). For
both LSM indexes, the Hilbert curve is used to order the entries

within each disk component. The following experiments were per-
formed as micro-benchmarks where the indexes were accessed di-
rectly, bypassing compilation, job setup, transactions, and other
code paths that are incurred by AQL statements submitted to As-
terixDB.

We first empirically determined that the best ingestion and query
performance for the LSM indexes can be obtained when their in-
memory and disk components page sizes are 0.5KB and 32KB, re-
spectively. On the other hand, a 2KB page size yielded, by far, the
best ingestion performance for the R-tree. However, larger page
sizes such as 16KB yielded much better query performance, but
performed poorly for ingestion. We decided to use a 2KB page size
for the R-tree since we are focusing on ingestion-intensive work-
loads. All experiments in this section use a single machine and
utilize a single disk. All records and queries are sent from a client
residing on a different machine. The machine configurations are
the same as the experiments in 6.1. The R-tree used a 1.5GB LRU
buffer cache, while each of the two LSM indexes used a 1GB LRU
buffer cache for caching disk component pages and 0.5GB for their
in-memory components. In addition, we used the prefix merge pol-
icy for both LSM indexes.

These micro-experiments employed data inspired by a real
dataset. The source dataset contained event occurrence data that
had time and location stamps, but the location information avail-
able in the source data was just at the (city, state) level. To con-
vert this data into a more GPS-like spatial dataset for use in our
micro-experiments, we synthetically augmented it as follows: we
geotagged all of the US records (of which there were approxi-
mately 120 million) and ended up with roughly 4500 unique data
points. We then used that point data to generate records following
the frequency distribution of the provided dataset, but we shifted
the points by adding random values in the range of [-0.25,0.25] to
the latitude and longitude values as a way to mimic a more realistic
fined-grained spatial dataset. The final dataset thus has approxi-
mately 4500 clusters, each with many distinct data points. The size
of each record is 40 bytes (four double values representing each
record’s bottom-left and upper-right corners and a 64-bit integer
representing a monotonically-increasing primary key). Note that
since the spatial location being indexed is a point, the minimum
bounding rectangle (MBR) for the point has corners with identical
data (the point itself). It would be possible to optimize space in this
case, but that is not currently done.

We generated query MBRs that provide result sets with similar
cardinalities when querying each index as follows. Since many of
the clusters are overlapping, the frequency distribution of each clus-
ter was pre-computed based on the percentage of the overlapping
area. For example, if two clusters overlap each other by 20% of
their area, the frequency distribution of each cluster is incremented
by 20% of the (original) distribution of the other cluster in order to
compensate. To create an MBR for a query, a cluster is first chosen
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(a) Raw Inserts.
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(c) Queries during Ingestion.
Figure 5: Ingestion and query performance of the R-tree, LSM R-tree, and AMLSM R-tree.

at random. Then, the size of the MBR is determined based on the
pre-computed frequency distribution of the chosen cluster such that
the size will be relatively small if the cluster is highly populated and
vice-versa. The size was restricted so as not to exceed the cluster
size, avoiding the creation of queries that may span clusters, which
may lead to very large result sets (this occurs when the number of
records in the cluster is less than the requested result cardinality).
Based on the MBR’s size, we choose the MBR center randomly
within the bounds of the cluster such that the MBR is fully con-
tained inside the cluster. The average result set size of the queries
was 2361 with 250 million records ingested into an index.

6.2.1 Ingestion Performance
Raw inserts: Figure 5(a) shows the raw insert performance when
ingesting a total of 250 million records from a single stream. The
R-tree took roughly 11 hours to ingest all of the data. Both LSM
indexes were able to ingest the same amount of data in less than
two hours. In the figure, the LSM indexes’ curves are on top of
each other because they behave similarly when the workload does
not contain deletes (i.e., append-only workloads), as expected.

We also observe from Figure 5(a) that the LSM indexes maintain
the same ingestion rate throughout the ingestion period. The first
reason for this is that random disk I/O is avoided by LSM indexes.
Second, in contrast to a primary index, a secondary index does not
enforce key uniqueness, avoiding the overhead of checking for du-
plicate keys. Third, the prefix merge policy bounds the merge cost
by ignoring disk components that are larger than a specified thresh-
old (1GB in our experiments). On the other hand, the R-tree suffers
from performance degradation over time. As more data is ingested,
the cost of performing in-place index writes becomes increasingly
expensive since the height of the tree grows without bound.
Inserts with concurrent queries: Similar to the previous experi-
ment, a stream of 250 million sequential insert operations was sent
to the indexes. In addition, a second, concurrent stream of queries
were submitted sequentially during ingestion. Figure 5(b) shows
the performance of these queries. For both LSM indexes, the effect
was very minimal, mainly because their inserts are mostly CPU
bound while queries are I/O bound. Therefore, queries are not con-
tending with inserts for resources. On the other hand, the R-tree’s
ingestion ability was negatively effected, with elapsed time up from
11 hours to 18 hours. The main reason is that in-place inserts and
queries are both I/O bound, causing resource contention between
the two operations.

6.2.2 Spatial Range Query Performance
Query performance after ingestion: Here, again, 250 million
records were ingested into each of the three indexes. Then, 1000
queries were submitted sequentially to each index. After that, the
two LSM indexes were each compacted into a single disk compo-

nent. Then, the same 1000 queries were again submitted to the
LSM indexes. Before compaction, each LSM index had 12 disk
components resulting from 78 flush and 19 merge operations, for
a total size of 11.3GB. After compacting the disk components, the
size of the single component was 11.3GB in both LSM indexes.
The final R-tree index size was 17.6GB. The difference in size is
due to the fact that the LSM indexes fully pack the pages of on disk
components since they are immutable, resulting in better space uti-
lization. Table 4 shows the results of this experiment.

After ingestion, the average query response time for the basic R-
tree was 25 and 29 times slower than that of the LSM R-tree and
the AMLSM R-tree, respectively. The LSM indexes’ query times
were much better since they incurred fewer buffer cache misses
compared to the R-tree, which can be attributed to: 1) the LSM R-
tree and the AMLSM R-tree use the Hilbert curve to order their en-
tries in every disk component which improves the clustering quality
of the R-trees’ entries, 2) the pages of the LSM disk components
are fully utilized, and 3) the disk page size of the LSM indexes
is larger than the R-tree page size. The LSM R-tree performed
slightly better than the AMLSM R-tree because the AMLSM R-
tree returns records sorted based on Hilbert order to reconcile index
entries. Since there are no deleted records in this experiment, the
time spent to maintain the Hilbert order while answering queries is
wasted. On the other hand, the Bloom filters associated with ev-
ery deleted-key B+-tree in the LSM R-tree handle this special case
(an empty Bloom filter) in an efficient manner. After compacting
the LSM indexes, their performance dramatically improved since
spatially-adjacent entries from different disk components are now
packed into a single component. Thus, the LSM indexes will have
to access fewer disk pages when answering a query.

Index Name

After Ingestion After Compaction
Avg.

Response
Time

Avg.
Cache
Misses

Avg.
Response

Time

Avg.
Cache
Misses

RTree 2543.2 560.6 - -
LSMRTree 86.7 24.7 17.5 8.1

AMLSMRTree 100.8 24.7 16.5 8.1

Table 4: Spatial range query performance (in milliseconds) and
number of buffer cache misses after ingestion and compaction.
Query performance during ingestion: In this experiment, a stream
of 250 million inserts were again sent concurrently with another
stream that submits queries sequentially during the ingestion. Fig-
ure 5(c) shows the corresponding query performance (notice that
the Y axis is using a log scale). Each data point represents the aver-
age query time of all the queries that were submitted since the last
data point. When the index had less than 25 million records, the R-
tree query performance was slightly better because all of its pages
were cached in memory, and because queries that were submitted to



the LSM indexes contended with flush and merge operations (there
were 9 flushes and 2 merges during the ingestion of the first 25
million records). When the R-tree had ingested around 30 million
records, pages from the buffer cache started to be evicted, which
led to significant performance degradation. Both LSM indexes pro-
vided comparable query performance throughout the ingestion pro-
cess. Their query times show some variance (the sawtooth shape)
due to resource contention of ongoing merge operations.
Effect of deletion: Finally, we also study the impact that deletion
has on query performance for the LSM R-tree and AMLSM R-tree.
Again, we used a single stream that inserts 250 million records with
a modification that now causes a 1% chance to delete an existing
record instead of inserting a new record. Therefore, by the end
of the experiments, the stream has submitted roughly 2.5 million
delete operations to each index. We also used a second, concurrent
stream that sent queries sequentially during the ingestion process.
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Figure 6: Effect of deletion on query performance.

Figure 6 shows the performance of queries in this case. Again,
each data point represents the average query time of all the queries
that were submitted since the last data point. The AMLSM R-tree
consistently provided faster query response time than the LSM R-
tree, almost by a factor of two, due to the handling of entry rec-
onciliation. The AMLSM R-tree reconciliates entries “on the fly”
as it accesses the entries based on Hilbert order from different disk
components. On the other hand, the LSM R-tree reconciliates en-
tries by probing all of the Bloom filters that are associated with the
deleted-key B+-trees of the newer components, and possibly the
deleted-key B+-trees themselves, which is more costly than recon-
ciliation of entries in the AMLSM R-tree.

7. CONCLUSIONS
In this paper, we presented the storage engine implemented in the

AsterixDB system. We described the framework in AsterixDB that
leverages existing implementations of conventional indexes (e.g.,
the R-tree) to convert them to LSM-based indexes, which allowed
us to avoid building specialized index structures from scratch and
enables the advantages that an LSM index provides. Further, we ex-
plained how AsterixDB enforces the ACID properties across multi-
ple heterogeneous LSM indexes. We also discussed the challenges
that a system like AsterixDB faces for managing its disk and mem-
ory resources when dealing with many LSM-based indexes. Fi-
nally, we shared results from a preliminary evaluation of Aster-
ixDB’s storage engine that shows its performance characteristics in
different settings and we presented the results for a set of micro-
benchmarks to evaluate the “LSM-ification” framework.
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