
Chosen Ciphertext Attacks Against Protocols

Based on the RSA Encryption Standard
PKCS #1

Daniel Bleichenbacher

Bell Laboratories
700 Mountain Ave., Murray Hill, NJ 07974

bleichen@research.bell-labs.com

Abstract. This paper introduces a new adaptive chosen ciphertext at-
tack against certain protocols based on RSA. We show that an RSA
private-key operation can be performed if the attacker has access to
an oracle that, for any chosen ciphertext, returns only one bit telling
whether the ciphertext corresponds to some unknown block of data en-
crypted using PKCS #1. An example of a protocol susceptible to our
attack is SSL V.3.0.

Keywords: chosen ciphertext attack, RSA, PKCS, SSL

1 Overview

In this paper, we analyze the following situation. Let n, e be an RSA public key,
and let d be the corresponding secret key. Assume that an attacker has access to
an oracle that, for any chosen ciphertext c, indicates whether the corresponding
plaintext cd mod n has the correct format according to the RSA encryption
standard PKCS #1.

We show how to use this oracle to decrypt or sign a message. The attacker
carefully prepares ciphertexts that are sent to the oracle. Combining the returns
from the oracle, the attacker gradually gains information on cd. The chosen ci-
phertexts are based on previous outcomes of the oracle. Thus, this technique is
an example of an adaptive chosen-ciphertext attack. Usually, a chosen ciphertext
attack is based on the theoretical assumption that the attacker has access to a
decryption device that returns the complete decryption for a chosen ciphertext.
Hence, if a public-key cryptosystem is susceptible to a chosen-ciphertext attack,
that often is considered to be only a theoretical weakness. However, the attack
shown in this paper is practical, because it is easy to get the necessary infor-
mation corresponding to the oracle reply. The attack can be carried out if, for
example, the attacker has access to a server that accepts encrypted messages
and returns an error message depending on whether the decrypted message is
PKCS conforming.

This paper is organized as follows. We describe the RSA encryption stan-
dard PKCS #1 in Section 2. In Section 3, we describe and analyze our chosen-
ciphertext attack. Different situations in which this attack can be carried out

H. Krawczyk (Ed.): CRYPTO’98, LNCS 1462, pp. 1–12, 1998.
c© Springer-Verlag Berlin Heidelberg 1998

2 Daniel Bleichenbacher

are listed in Section 4. We then analyze the vulnerability of SSL to our attack in
Section 5. In Section 6, we report experiments with the technique. In Section 7,
we conclude by offering recommendations.

2 PKCS #1

In this section, we describe briefly the RSA encryption standard PKCS #1; refer
to [11] for details. Currently, there are three block formats: Block types 0 and 1
are reserved for digital signatures, and block type 2 is used for encryption. We
describe only block type 2, because it is relevant for this paper.

00 02 00 data blockpadding string

Fig. 1. PKCS #1 block format for encryption. The first two bytes in this format
are constant. The length of the padding block can vary.

Let n, e be an RSA public key, and let p, q, d be the corresponding secret key
(i.e, n = pq and d ≡ e−1 (mod ϕ(n))). Moreover, let k be the byte length of n.
Hence, we have 28(k−1) ≤ n < 28k. A data block D, consisting of |D| bytes, is
encrypted as follows. First, a padding string PS, consisting of k−3−|D| nonzero
bytes, is generated pseudo-randomly. Here, |D| must not exceed k− 11; in other
words, the byte length of PS is a least 8. Now, the encryption block EB =
00||02||PS||00||D is formed (Figure 1), is converted into an integer x, and is
encrypted with RSA, giving the ciphertext c ≡ xe (mod n). The representation
of the ciphertext is not important for this paper.

We are, however, interested in how the receiver parses a ciphertext. First, he
gets an integer x′ by decrypting the ciphertext with his private key. Then, he
converts x′ into an encryption block EB′. Now he looks for the first zero byte,
which indicates the ending of the padding string PS and the start of the data
block D. The following definition specifies when this parsing process is successful.

Definition 1. An encryption block EB consisting of k bytes – that is,

EB = EB1||...||EBk

is called PKCS conforming – if it satisfies the requirements of block type 2 in
PKCS #1. In particular, EB must satisfy the following conditions:

– EB1 = 00.
– EB2 = 02.
– EB3 through EB10 are nonzero.
– At least one of the bytes EB11 through EBk is 00.

Chosen Ciphertext Attacks Against Protocols 3

We also call a ciphertext c PKCS conforming if its decryption is PKCS conform-
ing.

Note that the definition of conforming does not include possible integrity
checks. We show in Section 3 that it should not be possible for an attacker to
decide whether a chosen ciphertext is PKCS conforming. It is sometimes possible
for an attacker to do so even if the data block contains further integrity checks.

3 Chosen-Ciphertext Attacks

In a chosen-ciphertext attack, the attacker selects the ciphertext, sends it to the
victim, and is given in return the corresponding plaintext or some part thereof. A
chosen-plaintext attack is called adaptive if the attacker can chose the ciphertexts
depending on previous outcomes of the attack.

It is well known that plain RSA is susceptible to a chosen-ciphertext at-
tack [5]. An attacker who wishes to find the decryption m ≡ cd (mod n) of
a ciphertext c can chose a random integer s and ask for the decryption of the
innocent-looking message c′ ≡ sec mod n. From the answer m′ ≡ (c′)d, it is easy
to recover the original message, because m ≡ m′s−1 (mod n).

Another well-known result is that the least significant bit of RSA encryption
is as secure as the whole message [8] (see also [1]). In particular, there exists an
algorithm that can decrypt a ciphertext if there exists another algorithm that
can predict the least significant bit of a message given only the corresponding
ciphertext and the public key. H̊astad and Näslund recently extended this result
to show that all individual RSA bits are secure [9].

Hence, it is not necessary for an attacker to learn the complete decrypted
message in a chosen-ciphertext attack: Single bits per chosen ciphertext may be
sufficient.

The result reported in this paper is similar. We assume that the attacker has
access to an oracle that, for every ciphertext, returns whether the corresponding
plaintext is PKCS conforming. We show that we can use this oracle to compute
cd (mod n) for any chosen integer c. Theoretically, we can use H̊astad’s and
Näslund’s algorithm [9] to find c. In this paper, we describe a different algorithm
that has as its goal to minimize the number of chosen ciphertexts; thus, we show
the practicality of the attack. That is, we are not trying to generalize the attack;
rather, we would like to take advantage of specific properties of PKCS #1. In
particular, the algorithm relies on the facts that the first two bytes of the PKCS
#1 format are constant, and that we know these two bytes with certainty when
a ciphertext is accepted. Also, we use heuristic arguments in our the analysis of
the algorithm to approximate the number of expected chosen ciphertexts, rather
than finding an upper bound.

3.1 Description of the Attack

First, we give a short overview over the attack; then, we describe the attack in
detail.

4 Daniel Bleichenbacher

Assume that the attacker wants to find m ≡ cd (mod n), where c is an
arbitrary integer. Basically, the attacker chooses integers s, computes

c′ ≡ cse (mod n),

and sends c′ to the oracle. If the oracle says that c′ is PKCS conforming, then
the attacker knows that the first two bytes of ms are 00 and 02. For convenience,
let

B = 28(k−2).

Recall that k is the length of n in bytes. Hence, that ms is PKCS conforming
implies that

2B ≤ ms mod n < 3B.

By collecting several such pieces of information, we can eventually derive m.
Typically, 220 chosen ciphertexts will be sufficient, but this number varies widely
depending on numerous implementation details.

The attack can be divided into three phases. In the first phase, the message
is blinded, giving a ciphertext c0 that corresponds to an unknown message m0.
In the second phase, the attacker tries to find small values si for which the ci-
phertext c0(si)e mod n is PKCS conforming. For each successful value for si, the
attacker computes, using previous knowledge about m0, a set of intervals that
must contain m0. We elaborate this process later. The third phase starts when
only one interval remains. Then, the attacker has sufficient information about
m0 to choose si such that c0(si)e mod n is much more likely to be PKCS con-
forming than is a randomly chosen message. The size of si is increased gradually,
narrowing the possible range of m0 until only one possible value remains.

Now we describe this attack in detail. The variable Mi will always be a set
of (closed) intervals that is computed after a successful si has been found, such
that m0 is contained in one of the intervals of Mi.

Step 1: Blinding. Given an integer c, choose different random integers s0; then
check, by accessing the oracle, whether c(s0)e mod n is PKCS conforming.
For the first successful value s0, set

c0 ← c(s0)e mod n

M0 ← {[2B, 3B − 1]}
i← 1.

Step 2: Searching for PKCS conforming messages.
Step 2.a: Starting the search. If i = 1, then search for the smallest posi-

tive integer s1 ≥ n/(3B), such that the ciphertext c0(s1)e mod n is PKCS
conforming.

Step 2.b: Searching with more than one interval left. Otherwise, if i >
1 and the number of intervals in Mi−1 is at least 2, then search for the
smallest integer si > si−1, such that the ciphertext c0(si)e mod n is PKCS
conforming.

Chosen Ciphertext Attacks Against Protocols 5

Step 2.c: Searching with one interval left. Otherwise, if Mi−1 contains ex-
actly one interval (i.e., Mi−1 = {[a, b]}), then choose small integer values
ri, si such that

ri ≥ 2
bsi−1 − 2B

n
(1)

and
2B + rin

b
≤ si <

3B + rin

a
, (2)

until the ciphertext c0(si)e mod n is PKCS conforming.
Step 3: Narrowing the set of solutions. After si has been found, the set

Mi is computed as

Mi ←
⋃

(a,b,r)

{[
max

(
a,

⌈
2B + rn

si

⌉)
, min

(
b,

⌊
3B − 1 + rn

si

⌋)]}
(3)

for all [a, b] ∈Mi−1 and
asi − 3B + 1

n
≤ r ≤ bsi − 2B

n
.

Step 4: Computing the solution. If Mi contains only one interval of length
1 (i.e., Mi = {[a, a]}), then set m← a(s0)−1 mod n, and return m as solution
of m ≡ cd (mod n). Otherwise, set i← i + 1 and go to step 2.

Remarks. Step 1 can be skipped if c is already PKCS conforming (i.e., when
c is an encrypted message). In that case, we set s0 ← 1. However, step 1 is
always necessary for computing a signature, even if we do not wish to get a
blind signature.

In Step 2.a, we start with s1 = dn/(3B)e, because, for smaller values m0s1

is never PKCS conforming.
We use condition (1) because we want to divide the remaining interval in

each iteration roughly in half.
We can often improve the attack by using more information. For example,

we have not used the fact that any PKCS-conforming message m0si contains
at least one zero byte. Moreover, if the attack is performed in a client–server
environment, where both parties use the message m0si to generate session keys,
we might be able to find this message by exhaustive search if we already knew
a sufficient portion of it.

3.2 Analysis of the Attack

We now analyze the correctness of the attack and approximate the complexity
of, and, in particular, the number of oracle accesses necessary for, this attack.
We must make a few heuristic assumptions; hence, we cannot give a rigorous
proof of our result.

First, we approximate the probability Pr(P) that a randomly chosen integer
0 ≤ m < n is PKCS conforming. Let Pr(A) = B

n be the probability that, for a

6 Daniel Bleichenbacher

randomly chosen integer, the first two bytes are 00 and 02, respectively. Since
we have 216B > n > 28B, it follows that

2−16 < Pr(A) < 2−8.

The RSA modulus is usually chosen to be a multiple of 8; hence, Pr(A) will
usually be close to 2−16. The probability that the padding block PS contains at
least 8 non-zero bytes followed by a zero byte is

Pr(P |A) =
(

255
256

)8

·
(

1−
(

255
256

)k−10
)

.

Assuming a modulus n of at least 512 bit (i.e. k ≥ 64), we have

0.18 < Pr(P |A) < 0.97;

hence, we have
0.18 · 2−16 < Pr(P) < 0.97 · 2−8.

Next, we explain why our algorithm finds m0 and thus m. We prove that
m0 ∈ Mi for all i by induction over i. Since m0 is PKCS conforming, we have
2B ≤ m0 ≤ 3B − 1, and so, trivially, m0 ∈M0.

Now assume that m0 ∈ Mi−1. Hence, there exists an interval [a, b] ∈ Mi−1

with a ≤ m0 ≤ b. Since m0si is PKCS conforming, there exists an integer r such
that 2B ≤ m0si − rn ≤ 3B − 1, and hence asi − (3B − 1) ≤ rn ≤ bsi − 2B. We
also have

2B + rn

si
≤ m0 ≤ 3B − 1 + rn

si
.

Hence, it follows from the definition of Mi that m0 is contained in one of the
intervals.

Now we analyze the complexity of the attack. The messages in step 1 are
chosen randomly; therefore, this step needs about 1/Pr(P) accesses to the oracle
on average to find s0. We assume again that, on average, we need 1/Pr(P)
accesses to the oracle to find si for i ≥ 1 in step 2.a and 2.b. (See also the
remark at the end of this section.)

Let ωi be the number of intervals in Mi. Using heuristic arguments, we can
expect that ωi will satisfy the following equation for i ≥ 1.

ωi ≤ 1 + 2i−1si

(
B

n

)i

(4)

Indeed, the length of an interval in Mi is upper bounded by
⌈

B
si

⌉
. The knowledge

that m0si is PKCS conforming alone would lead to
⌈

siB
n

⌉
intervals of the form

Ir =
[⌈

2B + rn

si

⌉
,

⌊
3B − 1 + rn

si

⌋]
, (5)

since r can take at most
⌈

siB
n

⌉
values in equation (3).

Chosen Ciphertext Attacks Against Protocols 7

In particular, M1 will contain about
⌈

s1B
n

⌉
intervals. If i > 1, then each of the

intervals Ir or a fraction of Ir is included in Mi if Ir overlaps with one interval
of Mi−1. No interval Ir can overlap with two intervals in Mi−1. If intervals Ir

were randomly distributed, then the probability that one intersects with Mi−1

would be upper bounded by (
1
si

+
1

si−1

)
ωi−1.

Hence, we get Equation (4) by taking into account that one interval must con-
tain m0. In our case, we expect s2 to be approximately 2/Pr(P), and we have
2(B/n)2/Pr(P) = 2B/(nPr(P |A)) < 2B/(0.18n) < 1/20. Hence, w2 is 1 with
high probability. Thus, we expect that Step 2.b will be executed only once.

Now we analyze Step 2.c. We have Mi = {[a, b]}; hence, a ≤ m0 ≤ b, and
thus

2B + rin

b
≤ 2B + rin

m0
≤ si ≤ 3B − 1 + rin

m0
≤ 3B − 1 + rin

a
.

The length of the interval [2B+rin
b , 3B−1+rin

a] is

3B − 1 + rin

a
− 2B + rin

b
≥ 3B − 1 + rin

m0
− 2B + rin

m0
≥ B − 1

m0
≥ 1

3
B − 1

B
.

Therefore, we can expect to find a pair ri, si that satisfies (2) for about each
third value of ri that is tried. Thus, it seems easy to find such pairs ri, si that
satisfy (1) and (2) just by iterating through possible values for ri.

The probability that si ∈ [2B+rin
m0

, 3B−1+rin
m0

] is roughly 1/2. Thus, we will
find a PKCS-conforming si after trying about 2/Pr(P |A) chosen ciphertexts.

Since the remaining interval in Mi is divided in half in each step 2.c, we
expect to find m0 with about

3/Pr(P) + 16k/Pr(P |A)

chosen ciphertexts, where k denotes the size of the modulus in bytes. For Pr(P) =
0.18 · 2−16 and k = 128 (which corresponds to a 1024-bit modulus), we expect
that the attack needs roughly 220 chosen ciphertexts to succeed. The bit length
of the modulus is usually a multiple of 8; hence, Pr(P) is close to 0.18 · 2−16, as
assumed previously.

Remarks. The probabilities in this section were computed under the assump-
tion that the values si are independent of each other. We made that assumption
to allow a heuristic analysis of the algorithm. However, the assumption may be
wrong in special cases. For example, let us assume that m0 and sim0 are both
PKCS conforming with padding strings of similar length; that is, we have, for
some integer j,

m0 = 2 · 28(k−2) + 28jPS + D

sim0 = 2 · 28(k−2) + 28jPS′ + D′.

8 Daniel Bleichenbacher

Then, (2si − 1)m0 is PKCS conforming with high probability, since

(2si − 1)m0 = 2 · 28(k−2) + 28j(2PS′ − PS) + 2D′ −D

often is PKCS conforming too. We believe that such relations generally help the
attacker, but it in certain situations the attack might require many more chosen
ciphertexts than our analysis indicates.

Usually, the bit size of the RSA modulus is a multiple of 8. This choice is a
good one, because, for such a modulus, Pr(P) is small. A modulus with a bit
length 8k − 7 would make the attack much easier, because, in that case, only
about 213 chosen messages would be necessary.

4 Access to an Oracle

In this section, we describe three situations in which an attacker could get access
to an oracle.

4.1 Plain Encryption

Let us assume that a cryptographic protocol starts as follows. Alice generates
a message m (e.g., a randomly chosen key). She encrypts it with PKCS #1,
without applying any further integrity checks, and sends the ciphertext to Bob.
Bob decrypts the message. If the format of the message is not PKCS conforming,
then he returns an error; otherwise, he proceeds according to the protocol.

If Eve impersonates Alice, she can easily send messages to Bob and check
them for conformance. Note that Eve’s attack works even when the protocol
includes strong authentication at a later step, since Eve has obtained useful
information before she has to respond with an authenticated message.

Note that the RSA encryption standard PKCS #1 [11, page 8, note 3] recom-
mends that a message digest be included before an RSA operation, but for only
the signing procedure. Even though the standard mentions that an encrypted
message does not ensure integrity by itself, the standard does not indicate where
such an integrity check should be included.

4.2 Detailed Error Messages

Thus far, we have shown that a reliable integrity check is an important part
of an RSA encryption. One way to include such a check is to let the sender
sign the message with his private key, before he encrypts it with the receiver’s
public key. Then, an attacker can no longer hope to create a correct message by
accident. Her attack will nonetheless be successful when, in the case of a failed
verification, the receiver returns an error message that gives detailed information
about where the verification failed. In particular, it would compromise security
to return different error messages for a message that is not PKCS conforming
and for a message where only the signature verification failed.

Chosen Ciphertext Attacks Against Protocols 9

4.3 A Timing Attack

Certain applications combine encryption and signatures. In such cases, a reliable
integrity check often is part of the signature, but is not included in the encryp-
tion. Let us assume that an encrypted message c is decrypted and verified as
shown in the following pseudo-code:

1. Let m ≡ cd (mod n) be the RSA-decryption of c.
2. If m is not PKCS conforming, then reject.
3. Otherwise, verify the signature of m.
4. If the signature is not correct, then reject; otherwise, accept.

An attacker will not be able to generate a chosen ciphertext c such that this
message has a correct signature. However, she will be able to generate messages
such that c sometimes passes the check in step 2 and is rejected only after the
signature is checked. Hence, by measuring the server’s response time, an attacker
could determine whether c is PKCS conforming. This timing attack is much eas-
ier to perform than is Kocher’s timing attack [10], which measures the time
difference of single modular multiplications – a small fraction of the time used
for one exponentiation. In our case, however, we have to distinguish between
performing only an decryption and performing both an decryption and a signa-
ture verification. In the worst case, the time for the signature verification could
be significantly longer than the time for the decryption – when, for example,
we have a 512-bit encryption key because of export restrictions, but we use a
2048-bit key to ensure strong authentication. In addition, the attacker can chose
what signing key is sent to the server.

5 SSL V.3.0

00 02 00 premastersecret03 00

46 bytes

padding string

Fig. 2. SSL block format. Unlike the PKCS format, this format contains the
SSL version number. Moreover, the length of the data block is constant.

The situation discussed in this paper arises in SSL V.3.0 [7] during the hand-
shake protocol. In particular. the client and server first exchange the messages
client.hello and server.hello, which, among other information exchanges,
select the cryptographic routines. After that, the client and server may send
their public keys and certificates. The client then generates a random secret bit

10 Daniel Bleichenbacher

string called pre master secret, encrypts that secret bit string with RSA (if
that mode was chosen earlier), and sends the resulting ciphertext to the server.
The server decrypts the ciphertext. If the plaintext is not PKCS conforming,
the server sends an alert message to the client and closes the connection; oth-
erwise, the server continues the handshake protocol. Finally, the client has to
send a finished message, which contains strong authentication. In particular,
the client has to know the pre master secret to compute that message.

Because an attacker must generate a finished message that depends on the
pre master secret, she cannot complete the handshake protocol successfully.
However, she does not have to complete it; she gets the necessary information –
namely, whether her chosen message is PKCS conforming – before the protocol
is finished.

There are details of SSL V.3.0 that might hinder this attack if they are
implemented the right way. Figure 2 shows the format of the message containing
the pre master secret before the latter is encrypted with RSA. It contains
the version number of the protocol, the purpose of which is to detect version-
rollback attacks, in which an attacker tries to modify the hello messages such
that both client and server use the compatibility mode and hence use the Version
2.0, instead of Version 3.0, protocols. One implementation that we analyzed [12]
checks the version number only if the server is running in the compatibility mode,
because otherwise obviously no rollback attack has occurred.

A much more secure implementation would check the version number in all
modes, and, if it identified a mismatch, would send back to the client the same
error alert as it sends in the case of a decryption error. The result would be that
a randomly generated message would be accepted with a probability of about
2−40; although such a protocol still could not be called secure, the attack shown
in this paper would at least be impractical.

The SSL documentation does not specify clearly the error conditions and
corresponding alerts. As a result, different implementations of SSL do not react
consistently with one another in error situations.

6 Experimental Results

We implemented the algorithm described in Section 3 and verified experimentally
that this algorithm can decrypt a PKCS #1 encrypted message given access
to an oracle that, for any ciphertext, indicates whether the the corresponding
plaintext is PKCS conforming. We tested the algorithm with different 512-bit
and 1024-bit keys. The algorithm needed between 300 thousand and 2 million
chosen ciphertexts to find the message. We implemented our own version of the
oracle, rather than using an existing software product.

Finney checked three different SSL servers [6] to find out how carefully the
servers analyze the message format and what error alerts are returned. One of
the servers verified only the PKCS format. The second server checked the PKCS
format, message length, and version number, but returned different message

Chosen Ciphertext Attacks Against Protocols 11

alerts, thus still allowing our attack. Only the third server checked all aspects
correctly and did not leak information by sending different alerts.

7 Conclusion

We have shown a chosen-ciphertext attack that can be carried out when only par-
tial information about the corresponding message is leaked. We conclude not only
that it is important to include a strong integrity check into an RSA encryption,
but also that this integrity check must be performed in the correct step of the
protocol – preferably immediately after decryption. The phase between decryp-
tion and integrity check is critical, because even sending out error messages can
present a security risk. We also believe that we have provided a strong argument
to use plaintext-aware encryption schemes, such as the one described by Bellare
and Rogaway [3]. Note that plaintext awareness implies security against chosen-
ciphertext attacks [2,3]. In particular, Version 2 of PKCS #1, which makes use
of [3], is not susceptible to the attack described in this paper.

It is a good idea to have a receiver check the integrity of a message imme-
diately after decrypting that message. Even better is to check integrity before
decrypting a message, as Cramer and Shoup show is possible [4].

Acknowledgments

I thank Markus Jakobsson, David M. Kristol, and Jean-François Misarsky, as
well as the members of the program committee, for all their comments and
suggestions. I am grateful for the cooperation of the people at RSA Laboratories.
I thank Hal Finney for telling me about his experiments on different SSL servers.
I am also grateful to Lyn Dupré for editing this paper.

References

1. W. Alexi, B. Chor, O. Goldreich, and P. Schnorr. Bit security of RSA and Rabin
functions. SIAM Journal of computing, 17(2):194–209, Apr. 1988. 3

2. M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations among notions of
security for public-key encryptions schemes. In H. Krawczyk, editor, Advances in
Cryptology – CRYPTO ’98, Lecture Notes in Computer Science. Springer Verlag.
(in press). 11

3. M. Bellare and P. Rogaway. Optimal asymmetric encryption. In A. D. Santis,
editor, Advances in Cryptology – EUROCRYPT ’94, volume 950 of Lecture Notes
in Computer Science, pages 92–111, Berlin, 1995. Springer Verlag. 11, 11, 11

4. R. Cramer and V. Shoup. A practical public key cryptosystem provably secure
against adaptive chosen ciphertext attack. In H. Krawczyk, editor, Advances in
Cryptology – CRYPTO ’98, Lecture Notes in Computer Science. Springer Verlag.
(in press). 11

5. G. I. Davida. Chosen signature cryptanalysis of the RSA (MIT) public key cryp-
tosystem. Technical Report TR-CS-82-2, Departement of Electrical Engineering
and Computer Science, University of Wisconsin, Milwaukee, 1982. 3

12 Daniel Bleichenbacher

6. H. Finney. personal communication. 10
7. A. O. Freier, P. Karlton, and P. C. Kocher. The SSL Protocol, Version 3.0.

Netscape, Mountain View, CA, 96. 9
8. S. Goldwasser, S. Micali, and P. Tong. Why and how to establish a private code

on a public network. In Proc. 23rd IEEE Symp. on Foundations of Comp. Science,
pages 134–144, Chicago, 1982. 3

9. J. H̊astad and M. Näslund. The security of individual RSA bits. manusrcipt, 1998.
3, 3

10. P. C. Kocher. Timing attacks on implementations of Diffie–Hellman RSA, DSS,
and other systems. In N. Koblitz, editor, Advances in Cryptology – CRYPTO ’96,
volume 1109 of Lecture Notes in Computer Science, pages 104–113, Berlin, 1996.
Springer Verlag. 9

11. RSA Data Security, Inc. PKCS #1: RSA Encryption Standard. Redwood City,
CA, Nov. 1993. Version 1.5. 2, 8

12. E. A. Young. SSLeay 0.8.1. url = http://www.cryptsoft.com/ 10

	Overview
	PKCS #1
	Chosen-Ciphertext Attacks
	Description of the Attack
	Analysis of the Attack

	Access to an Oracle
	Plain Encryption
	Detailed Error Messages
	A Timing Attack

	SSL V.3.0
	Experimental Results
	Conclusion

